Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T19:36:18.013Z Has data issue: false hasContentIssue false

Crystal chemistry and significance of cation ordering in Mg-Al rich spinels from high-grade hornfels (Predazzo-Monzoni, NE Italy)

Published online by Cambridge University Press:  05 July 2018

F. Princivalle
Affiliation:
Dipartimento di Scienze della Terra, Università di Trieste, Via E. Weiss 8, I-34127 Trieste, Italy
A. Della Giusta
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, C.so Garibaldi 37, I-35100 Padova, Italy
A De Min
Affiliation:
Dipartimento di Scienze della Terra, Università di Trieste, Via E. Weiss 8, I-34127 Trieste, Italy
E. M. Piccirillo
Affiliation:
Dipartimento di Scienze della Terra, Università di Trieste, Via E. Weiss 8, I-34127 Trieste, Italy

Abstract

Two Mg-Al spinels (FAS1 and FAS2) in high-grade hornfels from the Toal de Mason skarn (Predazzo Monzoni, NE Italy) were investigated by means of single crystal X-ray diffraction and electron microprobe analysis in order to evaluate the last intra-crystalline closure temperature.

The evidence provided by crystal chemical data from the investigated spinels, compared with that for two other spinels from a websterite dyke and a chlorite schist (TS2 and SP78a, respectively) with similar chemical characteristics, yielded a new empirical geothermometer. This allowed estimation of intra-crystalline temperatures as low as c. 400°C and indicates that the closure temperature of FAS1 and FAS2 is c. 500°C i.e. 150–200°C lower than the spinel crystallisation temperature.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bocchi, G., Lucchini, F., Minguzzi, V., Nannetti, M.C. and Pirani, R. (1987) Mineralogia e geochimica delle aree di contatto Preddazzo-Monzoni: la vesuviana. Mineral Petrog. Acta, 30, 153–79.Google Scholar
Borsi, S., Ferrara, G., Paganelli, L. and Simboli, G. (1968) Isotopic age measurament of the M.Monzoni intrusive complex. Mineral. Petrog. Acta, 14, 171–83.Google Scholar
Carbonin, S., Russo, U. and Della Giusta, A. (1996) Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscoopy. Mineral. Mag., 60, 355–68.10.1180/minmag.1996.060.399.10Google Scholar
Della Giusta, A. and Ottonello, G. (1993) Energy and long-range disorder in simple spinels. Phys. Chem. Minerals, 20, 228–41.10.1007/BF00208136Google Scholar
Della Giusta, A., Carbonin, S. and Ottonello, G. (1996) Temperature-dependent disorder in a natural Mg-Al-Fe2+-Fe3+-spinel. Mineral. Mag., 60, 603–16.10.1180/minmag.1996.060.401.06Google Scholar
Grimes, N.W., Thompson, P. and Kay, H.F. (1983) New symmetry and structure for spinel. Proc. R. Soc. Lond.,A386, 333–45.Google Scholar
Hill, R.J., Craig, J.R. and Gibbs, G.V. (1979) Systematics of the spinel structure type. Phys. Chem. Minerals, 4, 317–39.10.1007/BF00307535Google Scholar
Kroll, H., Lueder, T., Schlenz, H., Kirfel, A. and Vad, T. (1997) The Fe2+, Mg distribution in orthopyroxene: a critical assessment of its potential as a geospeedometer. Eur. J. Mineral., 9, 705–33.10.1127/ejm/9/4/0705Google Scholar
Laurenzi, M.A. (1994) High resolution Ar/Ar chronology of Predazzo magmatic complex (Southem Alps, Italy). U.S. Geological Survey, circular 1107, ICOG 8 pp.Google Scholar
Lucchesi, S. and Della Giusta, A. (1997) Crystal chemistry of a highly disordered Mg-Al natural spinel. Mineral. Petrol., 59, 91–9.10.1007/BF01163063Google Scholar
Nell, J. and Wood, B.J. (1991) High-temperature electrical measurements and thermodynamic properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 spinels. Amer. Mineral., 76, 405–26.Google Scholar
Minguzzi, V., Morandi, N., Nannetti, M.C., Pirani, R. and Poppi, L. (1977) Mineralogy and geochemistry of the contact minerals in the Predazzo-Monzoni area — Part. II: The Predazzo fassaite and revision of the fassaite crystal-chemistry. Mineral. Petrog. Acta, 21, 189219.Google Scholar
North, A.C.T., Phillips, D.C. and Scott-Matthews, F. (1968): A semi-empirical method of absorption correction. Acta Crystallogr.,A24, 351–2.10.1107/S0567739468000707Google Scholar
Oberti, R., Munno, R., Foresti, E. and Krajewsky, A. (1982) A crystal-chemical study on six fassaites from the Predazzo-Monzoni Area. Rendiconti SIMP, 38, 649–55.Google Scholar
O’Neill, H.StC., and Navrotsky, A. (1983) Simple spinels: crystallographic parameters, cation radii, lattice energies and cation distributions. Amer. Mineral., 68, 181–94.Google Scholar
O’Neill, H.StC., and Navrotsky, A. (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Amer. Mineral., 69, 733–53.Google Scholar
Princivalle, F., Della Giusta, A. and Carbonin, S. (1989): Comparative crystal chemistry of spinels from some suits of ultramafic rocks. Mineral. Petrol., 40, 117–26.10.1007/BF01164322Google Scholar
Sheldrick, G.M. (1993) SHELX-93. Program for crystal structure refinement. University of Gottingen, Germany.Google Scholar
Winkler, B. (1976) Petrogenesis of Metamorphic Rocks. Springer Verlag, Berlin, Heidelberg, New York.Google Scholar