Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T08:13:10.190Z Has data issue: false hasContentIssue false

A corresponding states equation and compensation effects in crystal growth rates

Published online by Cambridge University Press:  05 July 2018

R. Dearnley*
Affiliation:
British Geological Survey, Murchison House, Edinburgh EH9 3LA

Abstract

Interpretation of grain size measurements in terms of the kinetics of grain growth depends on the ability to define the temperature variation of mineral growth rates. An outline is presented of the application to mineral growth rates of a corresponding states equation (CSE), which provides a relationship of growth rate to a reduced temperature function. Additionally, growth rates exhibit a 'compensation effect' between the pre-exponential constant and the activation energy in the standard Arrhenius equation, analogous to that shown by diffusion data. The general systematics of activation energy, equilibrium temperature and growth rate maxima are controlled by the relationships of the CSE, the standard Arrhenius equation and the compensation effect, and on this basis the temperature variation of growth rate between the equilibrium and the glass temperature may he estimated.

Type
Crystal Growth
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arndt, J. and Haberle, F. (1973) Thermal Expansion and Glass Transition Temperatures of Synthetic Glasses of Plagioclase-Like Compositions. Contrib. Mineral. Petrol., 39, 175–83.Google Scholar
Cranmer, D. and Uhlmann, D. R. (1981) Viscosities in the System Albite-Anorthite. J. Geophys. Res., 86, 7951–6.Google Scholar
Cukierman, M., Klein, L., Scherer, G., Hooper, R. W., and Uhlmann, D. R. (1973) Viscous flow and crystallisation behaviour of selected lunar compo-sitions. Geochim. Cosmochim. Acta. Supp., 4, 3, 2685-96.Google Scholar
Dearnley, R. (1983) Basaltic systems and a corresponding states equation for crystal growth rates. Nature, 304, 151–2.Google Scholar
De Luca, J. P., Eagan, R. J., and Bergeron, C. G. (1969) Crystallisation of PbO.2B203 from its supercooled melt. J. Amer. Ceram. Soc., 52(6), 322-6.Google Scholar
Dodson, M. H. (1973) Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol., 40, 259–74.Google Scholar
Dodson, M. H. (1976) Kinetic processes and thermal history of slowly cooling solids. Nature, 259, 551–3.Google Scholar
Eagan, R. J., DeLuca, J. P., and Bergeron, C. G. (1970) Crystal Growth in the System PbO-B20. J. Ames'. Ceram. Soc., 53(4) 214-9.Google Scholar
Fang, C. Y., Yinnon, H., and Uhlmann, D. R. (1983) Cooling Rates For Glass Containing Lunar Compositions. J. Geophys. Res., 88, Suppl., A907-A911.Google Scholar
Gandica, A. and Magill, J. H. (1972) A universal relationship for the crystallisation kinetics of poly-meric materials. Polymer, 13, 595–6.Google Scholar
Hart, S. R. (1981) Diffusion compensation in natural silicates. Geochim. Cosmochim. Aeta, 45, 279–91.Google Scholar
Handwerker, C. A., Onorato, P. I. K., and Uhlmann, D. R. (1978) Viscous flow, crystal growth, and glass formation of highland and mare basalts from Luna 24. Geochim. Cosmochim. Acta. Supp., 9, 483–93.Google Scholar
Hewins, R. H. and Klein, L. C. (1978) Provenance of metal and melt rock textures in the Malvern howar-dite. Proc. 9th Lunar Sci. Conf., 10, 1137–56.Google Scholar
Hofmann, A. W. (1980) Diffusion in natural silicate melts: a critical review. In Physics of Magmatic Processes (R. B. Hargraves, ed.), Princeton University Press, New Jersey.Google Scholar
Kirkpatrick, R. J. (1974) Kinetics of crystal growth in the system CaMgSi206-CaAl2SiO6. Amer. J. Sci., 274, 215–42.Google Scholar
Kirkpatrick, R. J. Robinson, G. R., and Hays, J. F. (1976) Kinetics of Crystal Growth From Silicate Melts: Anorthite and Diopside. J. Geophys. Res., 81, 5715–20.Google Scholar
Kirkpatrick, R. J. Klein, L., Uhlmann, D. R., and Hays, J. F. (1979) Rates and Processes of Crystal Growth in the System Anorthite-Albite. Ibid., 84, 3671-6.Google Scholar
Klein, L., and Uhlmann, D. R. (1974) Crystallisation Behaviour of Anorthite. Ibid., 79, 4869-74.Google Scholar
Klein, L., and Uhlmann, D. R. and Uhlmann, D. R. (1976) The kinetics of lunar glass formation, revisited. Proc. 7th Lunar Sci. Conf., 1113-21.Google Scholar
Klein, L., and Uhlmann, D. R. Onorato, P. I. K., Uhlmann, D. R., and Hopper, R. W. (1975) Viscous flow, crystallisation behaviour, and thermal histories of lunar breccias 70019 and 79155. Proc. 6th Lunar Sci. Conf., 579-93.Google Scholar
Kruchinin, Yu. D. and Ivanova, L. V. (1968) Crystallisation kinetics of slag glasses, lzvestiya Akad. Nauk, USSR, Inorganic Materials, 4(2), 269-73.Google Scholar
Lasaga, A. C. (1981) The Atomistic Basis of Kinetics: Defects in Minerals. In Reviews of Mineralogy, Mineral. Soc., Amer., 8, 261300.Google Scholar
Leontyeva, A. A. (1943) Dependence of crystallisation of certain molten rocks (aegirine rocks, basalts and diabases) upon their viscosity. Trans. All-Russian Mineral Soc., 72(1), 62-9.Google Scholar
Leontyeva, A. A. (1947) Crystallisation of two olivine basalts. Ibid., 76(3), 202-10.Google Scholar
Leontyeva, A. A. (1949) The effect of ferric oxide content on the linear rate of crystallisation of solid phases in basaltic glasses. Trudy. Inst. geol. Nauk, Mosk., 106(3), 3336.Google Scholar
McLean, D. (1965) The science of metamorphism in metals. In Controls of Metamorphism (W. S. Pitcher and G. W. Flinn, eds.), Oliver and Boyd, Edinburgh and London.Google Scholar
Magill, J. H., Li, H. M., and Gandica, A. (1973) Corresponding states equation for crystallisation kinetics. J. Cryst. Growth, 19, 361–4.Google Scholar
Muncill, G. E. and Lasaga, A. C. (1987) Crystal-growth kinetics of plagioclase in igneous systems: One-atmosphere experiments and application of a simplified growth model. Amer. Mineral., 72, 299311.Google Scholar
Sakka, S. and Mackenzie, J. D. (1971) Relation between apparent glass transition temperature and liquidus temperature for inorganic glasses. J. Non Cryst. Sol., 6, 145–62.Google Scholar
Scarfe, C. M. (1977) Viscosity of some basaltic glasses at one atmosphere. Can. Mineral., 15, 190–4.Google Scholar
Scherer, G., Hopper, R. W., and Uhlmann, D. R. (1972) Crystallisation behaviour and glass formation of selected lunar compositions. Geochim. Cosmochim. Acta Supp., 3, 3. 2627-37.Google Scholar
Shaw, H. R. (1972) Viscosities of magmatic liquids: an empirical method of prediction. Amer. J. Sci., 272, 870–93.Google Scholar
Swanson, S. E. (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Amer. Mineral., 62, 966–78.Google Scholar
Uhlmann, D. R. and Klein, L. C. (1976) Crystallisation kinetics, viscous flow, and thermal histories of lunar breccias 15286 and 15498. Proc. 7th Lunar Sci. Conf., 2529-41.Google Scholar
Uhlmann, D. R. Klein, L., Kritchevsky, G., and Hopper, R. W. (1974) The formation of lunar glasses. Geochim. Cosmochim. Acta Supp., 5, 3, 2317-31.Google Scholar
Uhlmann, D. R. Klein, L., Kritchevsky, G., and Hopper, R. W. and Handwerker, C. A. (1977) Crystallisation kinetics, viscous flow, and thermal history of lunar breccia 67975. Proc. 8th Lunar Sei. Conf., 2067-73. Google Scholar
Winchell, P. (1969) The Compensation Law for Diffusion in Silicates. High Temp. Sci., 1, 200–15.Google Scholar
Winchell, P. and Norman, J. H. (1969) A Study of the Diffusion of Radiaoctive Nucleides in Molten Silicates at High Temperatures. In High Temp. Technol., 3rd Int. Symp., Asilomar, 1967, 479-92.Google Scholar