Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T12:44:27.833Z Has data issue: false hasContentIssue false

The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data

Published online by Cambridge University Press:  05 July 2018

G. Tischendorf
Affiliation:
Neumannstr. 106, 13189 Berlin, Germany
H.-J. Förster
Affiliation:
GeoForschungsZentrum Potsdam, Dept. 4.2, Telegrafenberg, 14473 Potsdam, Germany
B. Gottesmann
Affiliation:
GeoForschungsZentrum Potsdam, Dept. 4.2, Telegrafenberg, 14473 Potsdam, Germany

Abstract

A major disadvantage of the electron microprobe is its inability to determine Li, which may make up an essential component in micaceous minerals. Correct classification of micas and proper calculation of their formulae require alternative methods. One of these is the indirect estimation of the lithium concentration by empirical approaches based on element correlations. Relationships between Li2O and SiO2 have long been used for this purpose; however, they are valid only for a limited range of mica compositions (i.e. Li-rich, Mg-poor varieties).

In this paper we report the results from a renewed study of the correlation between Li2O and MgO contents in trioctahedral micas. It is demonstrated that the relations between both oxides are strongly dependent upon the geological environment in which the mica was formed. It is necessary to distinguish a ‘normal group’, which comprises micas from ‘common’ S- and I-type magmatic rocks and most metamorphic rocks , a ‘low Li-Mg group’, to which belong Fe-rich micas from non-alkaline rocks of A-type affinity, and a ‘high Li-Mg group’ which includes micas from either peraluminous or peralkaline igneous rocks and Mg-enriched wall-rocks. These wall rocks supplied additional magnesium to the mica-forming environment. We offer empirical expressions relating Li2O and MgO contents for these three types which, in many cases, allow a sufficiently good estimation of the lithium content in trioctahedral micas of widely varying compositions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, H., Matsueda, H., Ishihara, S. and Miura, H. (1994) Mineral chemistry of albite-enriched granitoids at Um Ara, Southeastern Desert, Egypt. Int. Geol. Rev., 36, 1067–77.CrossRefGoogle Scholar
Abdel-Rahman, A.M. (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol., 35, 525–41.CrossRefGoogle Scholar
Ahmed-Said, Y., Leake, B.E., Bouabsa, L. and Moulahoum, O. (1995) The Central Hoggar Taourirt and albite-topaz post Pan-African granites (southern Algeria); their petrology, geochemistry and petrogenesis. Neues Jahrb. Mineral. Abh., 170, 2157.Google Scholar
Al-Saleh, S., Fuge, R. and Rea, W.J. (1977) The geochemistry of some biotites from the Dartmoor granite. Proc. Ussher Soc., 4, 3748.Google Scholar
Anderson, J.L. and Bender, E.E. (1989) Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America. Lithos, 23, 1952.CrossRefGoogle Scholar
Antipin, V.S., Gayvoronskiy, B.A., Sapozhnikov, V.P. and Pisarskaya, V.A. (1980) Ongonites from the Sherlovogorskiy region (East Transbaikalia) (In Russian). Dokl. AN SSSR, 253, 228–32.Google Scholar
Bagdasarov, Yu. A., Belykh, V.I., Skosyreva, M.V. and Vlasova, E.V. (1984) Mica-bearing melacarbonatites of the Kursk magnetic anomaly region (In Russian). Dokl. AN SSSR, 278, 1457–61.Google Scholar
Bagdasarov, Yu. A., Vlasova, E.V. and Skosyreva, M.V. (1985) Typomorphism of the micas of ultrabasic- alkaline rocks and carbonatites of the Maymecha- Kotuyskaya province (In Russian). Izv. AN SSSR, Ser. geol., No. 6, 7892.Google Scholar
Barrière, M. and Cotton, J. (1979) Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contrib. Mineral. Petrol., 70, 183–92.CrossRefGoogle Scholar
Bea, F. (1980) Geochemistry of biotites in an assimilation process. An approach to recognition of metamorphic biotites from magmatic occurrence. Krystalinikum, 15, 103–24.Google Scholar
Bea, F., Pereira, M.D. and Stroh, A. (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol., 117, 291312.CrossRefGoogle Scholar
Bigi, S. and Brigatti, M.F. (1994) Crystal chemistry and microstructures of plutonic biotite. Amer. Mineral., 79, 6372.Google Scholar
Bokonbaev, K.D. (1976) Peculiarities of metasomatic alteration of biotite in granites of the Sukhodol'sky massif (southeast Kirgizia) (In Russian). Zap. kirg. Otd. Vses. mineral. Obshch., 9, 96100.Google Scholar
Borodanov, V.M. (1983) Peculiarities of biotite composition in granitoids associated with tungsten mineralization (In Russian). Izvest. AN SSSR, Ser. geol. No. 7, 7681.Google Scholar
Breiter, K. (1995) Petrology and geochemistry of granites as precursors of dominant ore depositions in the Krušné hory - Erzgebirge region. In: Ore Mineralizations of the Krušné Hory Mts (Erzgebirge). Third Biennial SGA Meeting, Prague, August 28–31. 1995, Excursion guide, Czech Geological Survey, 19–40.Google Scholar
Breiter, K., Frýda, J., Seltmann, R. and Thomas, R. (1997) Mineralogical evidence for two magmatic stages and the evolution of an extremely fractionated P-rich rare-metal granite: the Podlesí stock, Krušné Hory, Czech Republic. J. Petrol., 38, 1723–39.CrossRefGoogle Scholar
Buchinskaya, K.M. and Nechayev, S.V. (1990) The problem of the Perzhanian granites (In Russian). Geol. Zhurn., 3, 2232.Google Scholar
Bur'yanova, E.Z. (1940) Mineralogy of granite pegmatites from the Korosten pluton in Volynia and investigation of Fe-bearing biotites (In Russian). Zap. Vses. mineral. Obshch., 69, 519–40.Google Scholar
Černý, P. (1972) Phlogopite, hydrophlogopite, and vermiculite from Hermanov, Czechoslovakia. Neues Jahrb. Mineral., Mh., 203–9.Google Scholar
Černý, P. and Burt, D.M. (1984) Paragenesis, crystal- lochemical characteristics, and geochemical evolu- tion of micas in granite pegmatites. In: Reviews in Mineralogy, 13, Micas (Bailey, S.W. Ed.), Mineral. Soc. Amer., Washington D.C., 257–97.Google Scholar
Černý, P. and Trueman, D.L. (1985) Polylithionite from rare-metal deposits of the Blachford Lake alkaline complex N. W. T., Canada. Amer. Mineral., 70, 1127–34.Google Scholar
Černý, P., Rieder, M. and Povondra, P. (1970) Three polytypes of lepidolite from Czechoslovakia. Lithos, 3, 319–25.CrossRefGoogle Scholar
Černý, P., Staňek, J., Novák, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kavalová, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineral. Petrol., 55, 177201.CrossRefGoogle Scholar
Chaudhry, M.N. and Howie, R.A. (1973) Lithium-aluminium micas from the Meldon aplite, Devonshire, England. Mineral. Mag., 39, 289–96.CrossRefGoogle Scholar
Cooper, A.F., Paterson, L.A. and Reid, D.L. (1995) Lithium in carbonatites—consequence of an en-riched mantle source. Mineral. Mag., 59, 401–8.CrossRefGoogle Scholar
Cundy, E.K., Windle, W. and Warren, I.H. (1960) The occurrence of zinnwaldite in Cornwall. Clay Miner. Bull., 4, 151–6.CrossRefGoogle Scholar
Cuney, M., Marignac, C. and Weisbrod, A. (1992) The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ. Geol., 87, 1766–94.CrossRefGoogle Scholar
de Albuquerque, C.A.R. (1973) Geochemistry of biotites from granitic rocks, Northern Portugal. Geochim. Cosmochim. Acta, 37, 1779–802.CrossRefGoogle Scholar
du Bray, E.A. (1994) Compositions of micas in peraluminous granitoids of the eastern Arabian Shield. Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites. Contrib. Mineral. Petrol., 116, 381–97.CrossRefGoogle Scholar
du Bray, E.A., Elliott, J.E. and Stuckless, J.S. (1988) Proterozoic peraluminous granites and associated Sn-W deposits, Kingdom of Saudi Arabia. In: Recent Advances in the Geology of Granite-Related Mineral Deposits (Taylor, R. P. and Strong, D. F., Eds.) Canad. Inst. Mining and Metall., Spec. Vol., 39, 142–56.Google Scholar
Edmunds, W.M., Kay, R.L.F. and McCartney, R.A. (1985) Origin of saline groundwaters in the Carnmenellis Granite (Cornwall, England): Natural processes and reaction during Hot Dry Rock reservoir circulation. Chem. Geol., 49, 287301.CrossRefGoogle Scholar
El Sheshtawi, Y.A., Salem, A.K.A. and Aly, M.M. (1993) The geochemistry of ferrous biotite and petrogenesis of Wadi El-Sheikh granitoid rocks, Southwestern Sinai, Egypt. J. African Earth Sci., 16, 489–98.CrossRefGoogle Scholar
Fiala, J., Vejnar, Z. and Kučerová, D. (1976): Composition of the biotites and the coexisting biotite-hornblende pairs in granitic rocks of the Central Bohemian Pluton. Krystalinikum, 12, 79–111.Google Scholar
Fonteilles, M. (1987) La composition chimique des micas lithiniféres (et autres mineéraux) des granites d'Échassiéres comme image de leur évolution magmatique. Géol. France, No. 2–3. 149–78.Google Scholar
Foord, E.E., Černý, P., Jackson, L.L., Sherman, D.M. and Eby, R.K. (1995) Mineralogical and geochem-ical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado. Mineral. Petrol., 55, 126.CrossRefGoogle Scholar
Foster, M.D. (1960 a) Interpretation of the composition of trioctahedral micas. U.S. Geol. Survey Prof. Paper, 354–B, 1149.Google Scholar
Foster, M.D. (1960 b) Interpretation of the composition of lithium micas. U.S.Geol. Survey Prof. Paper, 354–E, 115–47.Google Scholar
Franzini, M. and Sartori, F. (1969) Crystal data on 1M and 2M2 lepidolites. Contrib. Mineral. Petrol., 23, 257–70.CrossRefGoogle Scholar
Gamaleya, Yu. N. (1968) Polylithionite from granitoids of the Ulkansk pluton and conditions of its formation (In Russian). Dokl. AN SSSR, 182, 1186–9.Google Scholar
Ganzeeva, L.V. (1973) Taeniolite of alkali metasomatic rocks from Byelorussia (In Russian). Dokl. Ak. Nauk Byeloruss. SSR, 17, 560–62.Google Scholar
Gavrikova, S.N. (1983) Petrology and geochemistry of the Amudzhikansk granitoid complex (East Transbaikalia) (In Russian). Zap. Vses. mineral. Obshch., 112, 652–69.Google Scholar
Gottesmann, B., Tischendorf, G., Wand, U., Bielicki, K.-H., Förster, H.-J., Haase, G. and Thomas, R. (1994) Die granitoiden Gesteine des Sächsischen Granulitmassivs—Petrographie, Geochemie und Altersstellung. Hallesches Jahrb. Geowiss., 16, 23–55.Google Scholar
Grew, E.S., Chernosky, J.V., Werding, G., Abraham, K., Marquez, N. and Hinthorne, J.R. (1990) Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-ray study empha-sizing Li, Be, B and F contents. J. Petrol., 31, 1025–70.CrossRefGoogle Scholar
Grew, E.S., Hiroi, Y., Motoyoshi, Y., Kondo, Y., Jayatileke, S.J.M. and Marquez, N. (1995) Iron-rich kornerupine in sheared pegmatite from the Wanni Complex, at Homagama, Sri Lanka. Eur. J. Mineral., 7, 623–36.CrossRefGoogle Scholar
Gryazev, V.A., Orlovskiy, V.V., Favorskaya, M.A. and Arakelyants, M.M. (1985) On tin-bearing metaso- matites of the Rudnoe ore deposit at the Sikhote Alin western slope (In Russian). Dokl. AN SSSR, 283, 1451–54.Google Scholar
Haapala, I. (1977) Petrography and geochemistry of the Eurajoki stock, a rapakivi-granite complex with greisen-type mineralization in southwestern Finland. Bull. Geol. Surv. Finland, 286, 128 pp.Google Scholar
Haapala, I. (1988) Metallogeny of the Proterozoic rapakivi granites of Finland. In: Recent Advances in the Geology of Granite-Related Mineral Deposits (Taylor, R.P. and Strong, D.F., Eds.) Canad. Inst. Mining and Metall., Spec. Vol., 39, 124–32.Google Scholar
Hall, A. (1971) Greisenisation in the granite of Cligga Head, Cornwall. Proc. Geol. Assoc., 82, 209–30.CrossRefGoogle Scholar
Hall, A. and Walsh, J.N. (1972) Zinnwaldite granite from Glen Gairn, Aberdeenshire. Scott. J. Geol., 8, 265-7.CrossRefGoogle Scholar
Harada, K., Honda, M., Nagashima, K. and Kanisawa, S. (1976) Masutomilite, manganese analogue of zinn-waldite, with special reference to masutomilite-lepidolite-zinnwaldite series. Mineral. J., 8, 95–109.CrossRefGoogle Scholar
Hawley, C.C. and Wobus, R.A. (1977) Geology and ore deposits of the southern Tarryall region, Park and Jefferson Counties, Colorado. U.S. Geol. Surv., Prof. Paper, 608–B, 77 p.Google Scholar
Hawthorne, F.C. and Černý, P. (1982) Short Course in Granite Pegmatites. The Mica Group. Mineral. Assoc. Canada, Short Course Handbook, 8, 63–98.Google Scholar
Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite and annite. Amer. Mineral., 58, 889–900.Google Scholar
Hecht, L. (1993) Die Glimmer als Indikatoren für die magmatische und postmagmatische Entwicklung der Granite des Fichtelgebirges (NE-Bayern). Münchner Geol. Hefte, 10, 1221.Google Scholar
Heinrich, E.W. (1967) Micas of the Brown Derby pegmatites, Gunnison County, Colorado. Amer. Mineral., 52, 1110–21. 1578.Google Scholar
Hejtman, B. (1975) Biotitites and associated plutonic rocks in the Prachatice granulite body and its vicinity. Acta Universitatis Carolinae—Geologica, 4, 265–300.Google Scholar
Icenhower, J. and London, D. (1995) An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Amer. Mineral., 80, 1229–51.CrossRefGoogle Scholar
Icenhower, J. and London, D. (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib. Mineral. Petrol., 127, 1729.CrossRefGoogle Scholar
Ilton, E.S., Earley, D. III, Marozas, D. and Veblen, D.R. (1992) Reaction of some trioctahedral micas with copper sulfate solutions at 25°C and 1 atmosphere: An electron microprobe and transmission electron microscopy investigation. Econ. Geol., 87, 1813–29.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987) Fractionation trends in mica and tourmaline as indicator of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim. Cosmochim. Acta, 51, 519–34.CrossRefGoogle Scholar
Kabesh, M.L., Hilmy, M.E., Refaat, A.M. and Abdullah, Z.M. (1977) Geochemistry of biotites from Ras Barud granitic rocks, Eastern Desert, Egypt. Neues Jahrb. Mineral. Abh. 129, 201–10.Google Scholar
Khvostova, V.A., Laputina, I.P. and Peterson, M.P. (1973) Discovery of Cs biotite in the USSR (In Russian). Izv. AN SSSR, Ser. geol., No. 1, 142-6.Google Scholar
Kinnaird, J.A., Abernethy, C.A. and Bowden, P. (1992) The significance of mica compositional variations in Nigerian A-type granites: Is A for annite? EOS, April 7, 348.Google Scholar
Korenbaum, S.A. (1987) Typomorphism of Micas from Magmatic Rocks (In Russian). AN SSSR, Nauka, Moskva, 144 pp.Google Scholar
Koval', P.V., Kovalenko, V.I., Kuz'min, M.I., Pisarskaya, V.A. and Yurchenko, S.A. (1972 a) Mineral associations, composition and nomenclature of micas from rare-metal albite-bearing granitoids (In Russian). Dokl. AN SSSR, 202, 1174–7.Google Scholar
Koval', P.V., Kuz'min, M.I., Antipin, V.S., Sakharov, M.N., Znamenskiy, E.B., Gormasheva, G.S. and Yurchenko, S.A. (1972 b) Composition of biotites from the eastern Transbaikal region granitoids (In Russian). Geochimiya, No. 8, 957–70.Google Scholar
Kozlov, V.D., Svadkovskaya, L.N. and Karpov, I.K. (1978) Micas of the Magmatites of Transbaikalia (In Russian). AN SSSR, Nauka, Novosibirsk, 150 pp.Google Scholar
Kozlov, V.D., Svadkovskaya, L.N. and Matveyeva, L.N. (1979) Composition of biotites and problems of genesis of granitoids from Transbaikalia (In Russian). Geol. i Geofiz., No. 5, 3852.Google Scholar
Kramer, W. (1976) Genese der Lamprophyre im Bereich der Fichtelgebirgisch- Erzgebirgischen Antiklinalzone. Ein geochemisch-petrologischer Beitrag zum Problem der Kruste-Mantel- Beziehungen. Chem. Erde, 35, 1–49.Google Scholar
Kuznetsova, L.G. and Zagorskiy, V.E. (1984) The micas of the metasomatic rocks in the rare-metal province of a spodumen pegmatite (In Russian). Dokl. AN SSR, 275, 151–5.Google Scholar
Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites ex- ceptionally enriched in lithium and rubidium. Canad. Mineral., 35, 153–65.Google Scholar
Lapides, I. L., Kovalenko, V. I. and Koval', P. V. (1977) The Micas of Rare-Metal Granitoids (In Russian). Nauka, Sibirskoje Ltd., Novosibirsk, 103 pp.Google Scholar
Luecke, W. (1981) Lithium pegmatites in the Leinster granite (southeast Ireland). Chem. Geol., 34, 195–233.CrossRefGoogle Scholar
Malyshonok, Yu.V. (1989) Peculiarities of the chemical composition of micas from the Murun Massif (In Russian). Mineral. Zhurn., 11, 38–52.Google Scholar
Minařík, L., Houdková, Z., Absolon, K. and Köllnerová, Z. (1984) Geochemistry of biotites from the Karlovy Vary granite massif (Czech.). Acta Montana, ÚGG, ČSAV Praha, 68, 3344.Google Scholar
Moloshag, V.P. and Teremetskaya, A.G. (1975) Cs biotites from wall rocks in one of the fields with rare-metal pegmatites (In Russian). Dokl. AN SSSR, 221, 187–90.Google Scholar
Monier, G., Charoy, B., Cuney, M., Ohnenstetter, D. and Robert, J.L. (1987) Évolution spatiale et temporelle de la composition des micas du granite albitique à topaze-lépidolite de Beauvoir. Géol. France, 2–3. 179–88.Google Scholar
Müller, G. (1966): Die Beziehungen zwischen der chemischen Zusammensetzung, Lichtbrechung und Dichte einiger koexistierender Biotite, Muskowite und Chlorite aus granitischen Tiefengesteinen. Contrib. Mineral. Petrol., 12, 173–91.CrossRefGoogle Scholar
Nash, W.P. (1993) Fluorine iron biotite from the Honeycomb Hills rhyolite, Utah: The halogen record of decompression in a silicic magma. Amer. Mineral., 78, 1031–40.Google Scholar
Nedosekin, Yu.D. (1985) Micas of the rare-metal leucogranites of eastern Yakutia (In Russian). In: Typomorphism and Geochemical Characteristics of Minerals from Endogenous Rocks in Yakutia. Yakutsk. Fil. Sibirsk. Otd. AN SSSR, Yakutsk, 123–32.Google Scholar
Nedosekin, Yu.D. (1988) Rare-Metal Granites of the Northeastern USSR (In Russian). Nauka, Moskva, 141 pp.Google Scholar
Neiva, A.M.R. (1976) The geochemistry of biotites from granites of northern Portugal with special reference to their tin content. Mineral. Mag., 40, 453–66.CrossRefGoogle Scholar
Neiva, A.M.R. (1980) Chlorite and biotite from contact metamorphism of phyllite and metagraywacke by granite, aplite-pegmatite and quartz veins. Chem. Geol., 29, 4971.CrossRefGoogle Scholar
Neiva, A.M.R. (1981 a) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, 14, 149–63.CrossRefGoogle Scholar
Neiva, A.M.R. (1981 b) Geochemistry of chlorite and biotite from contact metamorphism of phyllite by granites. Mem. e Noticias, Publ. Lab. Mineral., Geol., Univ. Coimbra, No. 91/92, 113–34.Google Scholar
Neiva, A.M.R. (1993) Geochemistry of granites and their minerals from Gerez Mountain, Northern Portugal. Chem. Erde, 53, 227–58.Google Scholar
Neiva, A.M.R. and Gomes, M.E.P. (1991) Geochemistry of the granitoid rocks and their minerals from Lixa do Alvao-Alfarela de Jales-Tourencinho (Vila Pouca de Aguiar, northern Portugal). Chem. Geol., 89, 305–27.CrossRefGoogle Scholar
Neiva, A.M.R., Neiva, J.M.C. and Parry, S.J. (1987) Geochemistry of the granitic rocks and their minerals from Serra da Estrela, Central Portugal. Geochim. Cosmochim. Acta, 51, 439–54.CrossRefGoogle Scholar
Němec, D. (1969) Glimmer der regionalmetamorphen Skarne Westmährens. Tscherm. Mineral. Petrogr. Mitt., 13, 5584.CrossRefGoogle Scholar
Němec, D. (1981) Ein Pegmatit mit Li-Mineralisierung von Dolní Bory in Westmährens (SSR). Chem. Erde, 40, 146–77.Google Scholar
Němec, D. (1983) Zinnwaldit in moldanubischen Lithium-Pegmatiten. Chem. Erde, 42, 197–204.Google Scholar
Němec, D. (1990 a) Chemical composition of white micas of the West-Moravian pegmatites. Acta Mus. Moraviae, Sci. nat., Brno, 74, 4151.Google Scholar
Němec, D. (1990 b) Neues zur Mineralogie eines Hambergit-führenden Pegmatitgangs von Kracovice (bei Trebci, Westmorava, CSFR). Z. geol. Wiss., 18, 1105–15.Google Scholar
Němec, D. and Povondra, P. (1993) Chemical composition of lepidolite and the acidity-alkalinity of its pegmatite medium. Scripta Fac. Sci. Nat. Univ. Masaryk. Brunensis, Geol., 23, 45–53.Google Scholar
Neves, L.J.P.F. and Godinho, M.M. (1987) Nota sobre o comportamento geoquímico da biotite de rochas granitóides face á alteraçao. Mem. e Noticias, Publ. Mus. Lab. Mineral. Geol., Univ. Coimbra, No. 103, 49–64.Google Scholar
Novák, M. and Povondra, P. (1995) Elbaite pegmatites in the Modanubicum: a new subtype of the rare-element class. Mineral. Petrol., 55, 159–76.CrossRefGoogle Scholar
Orlov, Yu.S. (1985) Composition and structures of rock- forming minerals as indicators of the conditions of formation of granitoid intrusions. In: Typomorphism and Geochemical Characteristics of Minerals from Endogenous Rocks in Yakutiy. Yakutsk. Fil. Sibirsk. Otd. AN SSSR, Yakutsk, pp. 88–98.Google Scholar
Pavlishin, V.I., Voznyak, D.K. and Mel'nikov, V.S. (1968) Syngenetic mica inclusions in topaz from pegmatites of the Ukraine. Mineral. Sbor. L'vov. Univ., 22, 175–7.Google Scholar
Pechar, F. and Rykl, D. (1992) Die Vergleichung der kristallchemischen Parameter der Fe-Li-Glimmer aus den Lokalitäten Cínovec, Vysoký Kámen und des Biotits aus dem Mittelböhmischen Pluton (Czech, Gem. Res.). Ústecké Muzejní Seity, Ústi, 4, 5670.Google Scholar
Perrault, G. (1966) Polylithionite from St. Hilaire P.Q. Canad. Mineral., 8, 671.Google Scholar
Pomârleanu, V. and Movileanu, A. (1977–78) Contributii la geochimia biotitelor din Romania. D. S. Inst. Geol. Geofiz., 1. Miner.-Petrol.-Geochim., Bucuresti 65, 101–20.Google Scholar
Pomârleanu, V., Udubasha, G. and Neagu, E. (1986) Magnesian skarns from Tiblesh: Mineralogic and geochemical data. I. Fluorphlogopite. D. S. Inst. Geol. Geofiz., 70–71.(1983/1984), 41–51.Google Scholar
Raade, G. and Larsen, A.O. (1980) Polylithionite from syenite pegmatite at Vùra, Sandefjord, Oslo Region, Norway. Contributions to the mineralogy of Norway, No. 65. Norsk geol. Tidsskr., 60, 117–24.Google Scholar
Radvanec, M. and Radvancová, D. (1981) Chemical composition of biotite from the Hodrûša granodiorite and the Gemeric granite (Slovakian). Mineralia Slov., 13, 235–48.Google Scholar
Rieder, M. (1970) Chemical composition and physical properties of lithium-iron micas from the Krûšné hory Mts. (Erzgebirge). Contrib. Mineral. Petrol., 27, 131–58.CrossRefGoogle Scholar
Rieder, M., Povondra, P. and Frýda, J. (1995) Coexisting biotite and muscovite: an example from a Moinian mica schist at Glenfinnan, Scottish Highlands. Mineral. Petrol., 53, 6374.Google Scholar
Rieder, M., Haapala, I. and Povondra, P. (1996) Mineralogy of dark mica from the Wiborg rapakivi batholith, southeastern Finland. Eur. J. Mineral., 8, 593605.CrossRefGoogle Scholar
Rimsaite, J. (1970) Anionic and cationic variations in zoned phlogopite. Contrib. Mineral. Petrol., 29, 186–94.CrossRefGoogle Scholar
Rimsaite, J. (1971) Distribution of major and minor constituents between mica and host ultrabasic rocks, and between zoned mica and zoned spinel. Contrib. Mineral. Petrol., 33, 259–72.CrossRefGoogle Scholar
Rinaldi, R., Černý, P. and Ferguson, R.B. (1972) The Tanco pegmatite at Bernic Lake, Manitoba. VI. Lithium-rubidium-cesium micas. Canad. Mineral., 11, 690707.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995) Micas of the muscovite-lepidolite series from the Fregeneda pegmatites (Salamanca, Spain). Mineral. Petrol., 55, 145–57.CrossRefGoogle Scholar
Rub, M.G., Ashikhmina, N.A., Khazov, R.A. and Khazova, V.I. (1974) Petrochemistry of Precambrian tin-bearing granites of Northern Priladozh'e (In Russian). Izv. AN SSSR, Ser. geol. No. 4, 42–59.Google Scholar
Rub, M.G., Pavlov, V.A., Rub, A.K., Štemprok, M., Drabek, M. and Drabkova, E. (1983) Vertical zonality of elements in Li-F granites of the Cinovec massif (CSSR) (In Russian) In: Korrelyaziya magmaticheskikh porod Chekhoslovakii i nekotorikh rayonov SSSR (Bogatikov, O.A., and Borsuk, A.M., Eds.) Ed. Nauka Moskva, 108–37.Google Scholar
Rub, M.G. and Rub, A.K. (1980) Micas from rare-metal tin- and tungsten-bearing magmatic associations as indicators of their genesis and ore-bearing (In Russian). In: Peculiarities of Rock-Forming Minerals in Magmatic Rocks. Nauka. Moskva, pp. 101–26.Google Scholar
Rub, M.G. and Rub, A.K. (1986) Rare-metal granites from the Central Sikhote Alin’ (In Russian). Dokl. AN SSSR, 290, 1203–7.Google Scholar
Rub, M.G., Rub, A.K., Ashikhmina, N.A. and Krivoshchekov, N.N. (1996) Composition and genesis of rare-metal granites at the Zabytoe ore deposit, Central Sikhote Alin'. Petrology, 4, 381–92.Google Scholar
Rub, M.G., Rub, A.K. and Loseva, T.I. (1971) Micas as guides for ore presence detection in granitoids (In Russian). Izv. AN SSSR, Ser. geol., No. 10, 7385.Google Scholar
Rumyantseva, E.V., Mishchenko, K.S. and Kalinicheva, L.I. (1984) Taeniolite and Cr-V micas in metasomatic rocks from Karelia (In Russian). Zap. Vses. mineral. Obshch, 118, 68–75.Google Scholar
Savage, D., Cave, M.R., Milodowski, A.E. and George, I. (1987) Hydrothermal alteration of granite by meteoric fluid: an example from the Carnmenellis Granite, United Kingdom. Contrib. Mineral. Petrol., 96, 391405.CrossRefGoogle Scholar
Semenov, E.J. et al. (1969) in Skosyreva and Vlasova (1983).Google Scholar
Semenov, E.I. and Shmakin, B.M. (1988) On the composition of mica rocks in exocontacts of rare-metal pegmatites from the Bastar area (India) (In Russian). Dokl. AN SSSR, 303, 199202.Google Scholar
Shannon, W.M., Barnes, C.G. and Bickford, M.E. (1997) Grenville magmatism in west Texas: Petrology and geochemistry of the Red Bluff granitic suite. J. Petrol., 38, 1279–305.CrossRefGoogle Scholar
Shearer, C.K., Papike, J.J., Simon, S.B. and Laul, J.C. (1986) Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wallrock. Amer. Mineral., 71, 518–39.Google Scholar
Shibata, H. (1952) Spodumen and amblygonite from the Bunsen Mine and other localities in Korea. Tokyo Bunrika Daigaku, Sci. Repts., sec. C, 2, 145–54.Google Scholar
Silva, M.M.V.G. and Neiva, A.M.R. (1990) Geochemistry of the granites and their minerals from Paredes da Beira-Penedono, northern Portugal. Chem. Geol., 85, 147–70.CrossRefGoogle Scholar
Skosyreva, M.V. and Vlasova, E.V. (1983) First occurrence of polylithionite from rare-metal granite pegmatites (In Russian). Dokl. AN SSSR, 272, 694–97.Google Scholar
Smith, D.R., Barnes, C., Shannon, W., Roback, R. and James, E. (1997) Petrogenesis of Mid-Proterozoic granitic magmas: examples from central and west Texas. Precamb. Res., 85, 5379.CrossRefGoogle Scholar
Smith, T.E., Miller, P.M. and Huang, C.H. (1982) Solidification and crystallization of a stanniferous granitoid pluton, Nova Scotia, Canada. In: Metallization Associated with Acid Magmatism (Evans, A.M., Ed.), John Wiley & Sons Ltd., Chichester, pp. 301–20.Google Scholar
Sobachenko, V.N., Matveyeva, L.N. and Bazarova, S.B. (1979) The evolution of mica composition in the zone of the East Sayan Fault (In Russian). Geol. i geofiz., No. 11, 4450.Google Scholar
Sobachenko, V.N., Matveyeva, L.N. and Chaltuyeva, V.K. (1989) The evolution of mica composition in granitization and near-fracture metasomatic pro- cesses in Precambrian trough structures (In Russian). Geol. i geofiz. No. 12, 7381.Google Scholar
Stevens, R.E. (1938) New analyses of lepidolites and their interpretation. Amer. Mineral., 23, 607–28.Google Scholar
Stone, M., Exley, C.S. and George, M.C. (1988) Compositions of trioctahedral micas in the Cornubian batholith. Mineral. Mag., 52, 175–92.CrossRefGoogle Scholar
Shihua, Sun (1984) The subdivision of lithium micas and their significance in the study of granitoids. In: Geology of Granites and their Metallogenetic Relations (Keqin, Xu, Guangchi, Tu, eds.), Proc. of the Int. Symp., Nanjing, China, Oct. 26–30. 1982, 379–93.Google Scholar
Taylor, R.P. (1992) Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite- topaz granite, southern New Brunswick, and comparisons with other topaz-bearing felsic rocks. Can. Mineral., 30, 895921.Google Scholar
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using micro- probe data: application to micas from granitic rocks. Eur. J. Mineral., 2, 595–610.CrossRefGoogle Scholar
Tischendorf, G., Friese, G. and Schindler, R. (1969) Die Dunkelglimmer der westerzgebirgisch-vogtlän-dischen Granite und ihre Bedeutung als petrogenetische und metallogenetische Indikatoren. Geologie, 18, 384–99. 1024–44.Google Scholar
Tischendorf, G., Gottesmann, B., Förster, H.-J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analysis and an improved diagram for graphical representation. Mineral. Mag., 61, 809–34.CrossRefGoogle Scholar
Trunilina, V.A. and Kulagina, D.A. (1986) Petrography and mineralogy of the late Mesozoic tin-bearing granites from the Selennyakh Mountain Range (In Russian). In: Problemy magmatizma vostochnoy Yakutii. Yakutsk. Fil. Sibirsk. Otd. AN SSSR, Yakutsk, 80–101.Google Scholar
Trunilina, V.A. and Royev, S.P. (1988) Late-Mesozoic Magmatism of the Selennyakh Mountain Range (In Russian). Yakutsk. Fil. Sibirsk. Otd. AN SSSR, Yakutsk, 163 pp.Google Scholar
Uhlig, J. (1992) Zur Mineralogie und Geochemie der Granitoid- und Greisenglimmer aus Zinnlagerstätten des Sächsischen Erzgebirges und der Mongolei. Thesis, Bergakademie Freiberg, 129 p.Google Scholar
Ukai, Y., Nishimura, S. and Hashimoto, Y. (1956) Chemical studies of lithium micas from the pegmatite of Minagi, Okayama Prefecture. Mineral. J., 2, 2738.CrossRefGoogle Scholar
Vejnar, Z. (1971) Trioctahedral micas of West Bohemian pluton and their petrogenetic significance. Krystalinikum, 7, 149–66.Google Scholar
Velikoslavinsky, D.A. (1994) Biotite from rapakivi. Mineral. Petrol., 50, 3542.CrossRefGoogle Scholar
Vlasov, K.A. (Ed.) (1964) Geochemistry, Mineralogy and Genetic Types of Rare Element Deposits. Part 2: Mineralogy of Rare Elements (In Russian). Nauka, Moskva, 829 pp.Google Scholar
Vlasov, K.A., Kuz'menko, M.V. and Es'kova, E.M. (1959) The Lovozero Alkaline Massif (In Russian) AN SSSR, Moskva, 623 pp.Google Scholar
Volkov, V.N. and Gorbacheva, S.A. (1980) Variations of crystallization environment of granites in a vertical section of an intrusive body according to data on the composition of rock-forming biotite (In Russian). Geokhimiya, No. 1, 147–53.Google Scholar
Yakovleva, A.K. (1972) Typomorphic peculiarities of micas from the Allarechensko region (In Russian). Zap. Vses. mineral. Obshch., 101, 361–9.Google Scholar
Zaritskiy, A.I., Kirikilitsa, S.I., Labuznyy, V.F., Marchenko, E.Ya., Metalidi, S.V., Potebnya, M.T. and Slysh, R.A. (1983) Cesium biotite from a new field of microcline-albite pegmatites (In Russian). Mineral. Zhurn., 5, 83–5.Google Scholar