Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T17:55:52.339Z Has data issue: false hasContentIssue false

Connellite: stability relationships with other secondary copper minerals

Published online by Cambridge University Press:  05 July 2018

A. M. Pollard
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB
R. G. Thomas
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB
P. A. Williams
Affiliation:
School of Chemistry and Applied Chemistry, University of Wales College of Cardiff, P.O. Box 912, Cardiff CF1 3TB

Abstract

The stability of synthetic connellite has been determined at 298.2K (25 °C) and 105 Pa, using solution methods. For the reaction 1/37{62H+(aq) + Cu37Cl8(SO4)2(OH)62.8H2O(s) ⇌ Cu2+(aq) + 8Cl(aq) + 2SO42−(aq) + 70H2O(l)}, log KH+ is equal to 6.44(2). This result has been used in turn to calculate a value for ΔfG°(1/37Cu37Cl8(SO4)2(OH)62.8H2O, s, 298.2K) of −423.7±6.6 kJ mol−1. During the synthesis of connellite, claringbullite sometimes forms as a metastable phase. This solid recrystallizes to connellite if kept in contact with the reaction solution. The results have been used to construct an equilibrium model for the formation of connellite in relation to other common secondary copper (II) minerals. Connellite crystallizes from solution over an appreciable range of conditions. This result is consistent with the observed widespread occurrence of connellite, though as a very minor phase, in the oxidized zones of cupriferous sulfide ores.

Type
Petrology and Experimental Studies
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J. W., Williams, S. A. and Bideaux, R. A. (1977) Mineralogy of Arizona, University Press of Arizona, Tucson, Arizona.Google Scholar
Bannister, F. A,, Hey, M. H. and Claringbull, G. F. (1950) Mineral. Mag. 29, 280-5.Google Scholar
Fejer, A. A., Clark, A. M., Couper, A. G. and Elliot, C. J. (1977) Ibid. 41, 433-6.Google Scholar
Graeme, R. W. (1981) Mineral. Record, 12, 259319.Google Scholar
Karrup-Møller, S., Lokkegaard, L., Semenov, E. I. and Sorenson, H. (1978) Bull. Grénlands Geol. Unders. 126, 47.Google Scholar
Kato, A., Matsubara, G., Fujimoto, M. and Fururie, O. (1980) Geosci. Mag. 31, 455-9.Google Scholar
Kirchner, E. C. (1978) Aufschluss, 29, 351-4.Google Scholar
Long, D. T. and Angino, E. A. (1977) Geochim. Cosmochim. Acta, 41, 1183-91.CrossRefGoogle Scholar
McLean, W. J. and Anthony, J. W. (1972) Amer. Mineral. 57, 426-38.Google Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana's Syst. Min., 7th Ed. Wiley and Sons, Vol. 2.Google Scholar
Perrin, D. D. and Sayce, I. G. (1967) Talanta, 14, 833-42.CrossRefGoogle Scholar
Pollard, A. M., Thomas, R. G. and Williams, P. A. (1989a) Mineral. Mag. 53, 557-63.CrossRefGoogle Scholar
Pollard, A. M., Thomas, R. G., Williams, P. A., Bevins, R. A. and Turgoose, S. (1989b) J. Russell Soc. 2, pt. 2, 23-7.Google Scholar
Robie, R. A., Hemingway, B. S. and Fisher, J. R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1Bar (105 Pascal) Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1452,Google Scholar
Smith, R. A. and Martell, A. E. (1976) Critical Stability Constants. Plenum Press, Vol. 4.CrossRefGoogle Scholar
Symes, J. L. and Kester, D. A. (1984) Geochim. Cosmochim. Acta, 48, 2219-29.CrossRefGoogle Scholar
Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumm, R. H. (1969) Nat. Bur. Standards, Tech. Note, 270-4.Google Scholar
Woods, T. L. and Garrels, R. M. (1986) Econ. Geol. 81, 1989-2007.CrossRefGoogle Scholar