Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T19:08:50.300Z Has data issue: false hasContentIssue false

Compressibility to 7 GPa at 298 K of the protonated octahedral framework mineral burtite, CaSn(OH)6

Published online by Cambridge University Press:  05 July 2018

M. D. Welch*
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
W. A. Crichton
Affiliation:
ESRF, 6 Rue Jules Horowitz, 38043 Grenoble, France
*

Abstract

The equation of state of synthetic deuterated burtite, CaSn(OD)6, has been determined to 7.25 GPa at 298 K by synchrotron X-ray powder diffraction. Fitting to a third-order Birch-Murnaghan equation of state gives K0 = 44.7(9) GPa and K0′ = 5.3(4). A second-order fit gives K0 = 47.4(4) GPa. Within experimental error the two fits are indistinguishable over the pressure range studied. The decrease in the a parameter with pressure is smooth and no phase transitions were observed. Burtite is much more compressible (by a factor of three or four) than CaSnO3 and CdSnO3 perovskites, indicating that the absence of a cavity cation has a major effect upon the compressibility of the octahedral framework. Burtite is also markedly more compressible than the closely-related mineral stottite FeGe(OH)6 (K0 = 78 GPa). Their different compressibilities correlate with the relative compressibilities of stannate and germanate perovskites. Although different octahedral compressions are likely to be the primary reason for the different compressibilities of burtite and stottite, we also consider the possible secondary role of hydrogen-bonding topology in affecting the compressibilities of protonated octahedral frameworks. Burtite and stottite have different hydrogen-bonding topologies due to their different octahedral-tilt system. Burtite, space group Pn and tilt system a+a+a+, has a hydrogen-bonded network of linked four-membered rings of O-H…O linkages, whereas stottite, space group P42/n and tilt system a+a+c, has <100> O-H…O crankshafts and isolated four-membered rings. These different hydrogen-bonded configurations lead to different bracing of the empty cavity sites by the O-H…O linkages and very different hydrogen-bonding connectivities in these two minerals that may also enhance the difference between their compressibilities.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basciano, L.C., Peterson, R.C., Roeder, P.L. and Swainson, I. (1998) Description of schoenfliesite, MgSn(OH)6, and roxbyite, Cu1.72S, from a 1375 BC shipwreck, and Rietveld neutron-diffraction refinement of synthetic schoenfliesite, wickmannite, MnSn(OH)6, and burtite, CaSn(OH)6 . The Canadian Mineralogist, 36, 12031210.Google Scholar
Betterton, J., Green, D.I., Jewson, C., Spratt, J. and Tandy, P. (1998) The composition and structure of jeanbandyite and natanite. Mineralogical Magazine, 62, 707712.CrossRefGoogle Scholar
Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York, 336 pp.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Cohen-Addad, C. (1968) Étude structurale des hydroxystannates CaSn(OH)6 et ZnSn(OH)6 par diffraction neutronique, absorption infrarouge et résonance magnétique nucléaire. Bulletin de la Société Française de Mineralogie et Cristallographie, 91, 315324.CrossRefGoogle Scholar
Faust, G.T. and Schaller, W.T. (1971) Schoenfliesite, MgSn(OH)6 . Zeitschrift für Kristallographie, 134, 116141.Google Scholar
Glazer, A.M. (1972) The classification of tilted octahedra in perovskites. Acta Crystallographica, B28, 33843392.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Thompson, A., Graafsma, H., Kvick, A. and Moy, J. (1995) Calibration and correction of distortions in twodimensional detector systems. Review of Scientific Instruments, 66, 27292733.CrossRefGoogle Scholar
Kampf, A.R. (1982) Jeanbandyite, a new member of the stottite group from Llallagua, Bolivia. The Mineralogical Record, 12, 235239.Google Scholar
Kung, J., Angel, R.J. and Ross, N.L. (2001) Elasticity of CaSnO3 perovskite. Physics and Chemistry of Minerals, 28, 3543.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86748.Google Scholar
Letoullec, R., Pinceaux, J.P. and Loubeyre, P. (1998) The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations. High Pressure Research, 1, 7796.CrossRefGoogle Scholar
Liebermann, R.C., Jones, L.E.A. and Ringwood, A.E. (1977) Elasticity of aluminate, titanite, stannate and germanate compounds with the perovskite structure. Physics of the Earth and Planetary Interiors, 14, 165178.CrossRefGoogle Scholar
Mao, H.K., Xu, J. and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. Journal of Geophysical Research, 91, 4673–4476.CrossRefGoogle Scholar
Marshukova, N.K., Palovskii, A.B., Sidorenko, G.A. and Chistyakova, N.I. (1981) Vismirnovite, ZnSn(OH)6 and natanite, FeSn(OH)6, new tin minerals. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 110, 492500.Google Scholar
Moore, P.B. and Smith, J.V. (1967) Wickmanite, Mn2+[Sn4+(OH)6], a new mineral from Laångban. Arkiv för Mineralogi och Geologi, 4, 395399.Google Scholar
O'Keeffe, M. and Hyde, B.G. (1977) Some structures topologically related to cubic perovskite (E21), ReO3 (DO9) and Cu3Au (L12). Acta Crystallographica, B33, 38023813.CrossRefGoogle Scholar
Piermarini, G.J., Block, S., Barnett, J.D. and Forman, R.A. (1975) Calibration of the pressure dependence of the R1 ruby fluorescence line. Journal of Applied Physics, 46, 27742780.CrossRefGoogle Scholar
Ross, C.R., Bernstein, L.R. and Waychunas, G.A. (1988) Crystal-structure refinement of stottite, FeGe(OH)6 . American Mineralogist, 73, 657661.Google Scholar
Ross, N.L. (2001) Framework structures. Pp. 257287 in: High-temperature and High-pressure Crystal Chemistry (Hazen, R.M. and Downs, R.T., editors). Reviews in Mineralogy and Geochemistry, 41, Mineralogical Society of America, Washington, D.C.Google Scholar
Ross, N.L. and Angel, R.J. (1999) Compression of CaTiO3 and CaGeO3 perovsk ites. American Mineralogist, 84, 277281.CrossRefGoogle Scholar
Ross, N.L., Chaplin, T.D. and Welch, M.D. (2002) Compressibility of stottite, FeGe(OH)6: An octahedral framework with protonated oxygens. American Mineralogist (submitted).Google Scholar
Sonnet, P.M. (1981) Burtite, calcium hexahydroxystannate, a new mineral from El Hamman, Central Morocco. The Canadian Mineralogist, 19, 397401.Google Scholar
Strunz, H. and Contag, B. (1960) Hexahydroxostannate Fe, Mn, Co, Mg, Ca [Sn(OH)6] und deren Kristallstruktur. Acta Crystallographica, 13, 601603.CrossRefGoogle Scholar
Strunz, H. and Giglio, M. (1961) Die Kristallstruktur von Stottit Fe[Ge(OH)6]. Acta Crystallographica, 14, 205208.CrossRefGoogle Scholar
White, J.S. and Nelen, J.A. (1973) Tetrawickmanite, tetragonal MnSn(OH)6, a new mineral from North Carolina, and the stottite group. Mineralogical Record, 4, 2430.Google Scholar
Williams, S.A. (1985) Mopungite, a new mineral from Nevada. Mineralogical Record, 16, 7374.Google Scholar