Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T13:45:20.027Z Has data issue: false hasContentIssue false

Compositional variation in the chevkinite group: new data from igneous and metamorphic rocks

Published online by Cambridge University Press:  05 July 2018

R. Macdonald*
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, al. Žwirki i Wigury 93, 02-089 Warszawa, Poland Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
H. E. Belkin
Affiliation:
U.S. Geological Survey, 956 National Center, Reston, VA 20192, USA
F. Wall
Affiliation:
Camborne School of Mines, School of Geography, Archaeology and Earth Resources, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
B. Baginski
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, al. Žwirki i Wigury 93, 02-089 Warszawa, Poland
*

Abstract

Electron microprobe analyses are presented of chevkinite-group minerals from Canada, USA, Guatemala, Norway, Scotland, Italy and India. The host rocks are metacarbonates, alkaline and subalkaline granitoids, quartz-bearing pegmatites, carbonatite and an inferred K-rich tuff. The analyses extend slightly the range of compositions in the chevkinite group, e.g. the most MgO-rich phases yet recorded, and we report two further examples where La is the dominant cation in the A site. Patchily- zoned crystals from Virginia and Guatemala contain both perrierite and chevkinite compositions. The new and published analyses are used to review compositional variation in minerals of the perrierite subgroup, which can form in a wide range of host rock compositions and over a substantial pressure- temperature range. The dominant substitutions in the various cation sites and a generalized substitution scheme are described.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, G.V. and Ripp, G.S. (1995) About perrierite found in apatite ore. Proceedings of the Russian Mineralogical Society, 124, 83—84. (in Russian).Google Scholar
Armstrong, J.T. (1995) CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Analysis, 4, 177—200.Google Scholar
Azambre, B., Rossy, M. and Lago, M. (1987) Caracteristiques petrologiques des dolerites tholeii- tiques d’age triasique (ophites) du domain pyreneen. Bulletin de Mineralogie, 110, 379—396.Google Scholar
Bacon, C.R., Sisson, T.W. and Mazdab, F.K. (2007) Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology, 35, 491—494.CrossRefGoogle Scholar
Barritt, S.D. (1983) The controls of radioelement distribution in the Etive and Cairngorm Granites: implications for heat production. PhD thesis, The Open University, UK, 308 pp.Google Scholar
Belkin, H.E., Macdonald, R. and Grew, E.S. (2009) Perrierite from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India. Mineralogical Magazine, 73, 149—164.CrossRefGoogle Scholar
Bonatti, S. and Gottardi, G. (1950) Perrierite, nuovo minerale ritrovato nella sabia di Nettuno (Roma). Rendiconti Accademia Nazionale dei Lincei Ser. 8, 9, 361—368.Google Scholar
Bonatti, S. and Gottardi, G. (1954) Nuovi dati sulla perrierite: Relazioni tra perrierite, chevkinite ed epidoti. Rendiconti della Societa Mineralogia Italiana, 10, 208—225.Google Scholar
Bonatti, S. and Gottardi, G. (1966) Un caso di poliformisma a strati in sorosilicati; perrierite and chevkinite. Periodico di Mineralogia, 35, 65—91.Google Scholar
Budding, K.E., Cunningham, C.G., Zielinski, R.A., Steven, T.A. and Stern, C.R. (1987) Petrology and chemistry of the Joe Lott Tuff Member of the Mount Belknap volcanics, Marysvale volcanic field, west- central Utah. U.S. Geological Survey Professional Paper, 1354, 47 pp.CrossRefGoogle Scholar
Carlier, G. and Lorand, J.-P. (2008) Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the South Peruvian potassic province. Lithos, 104, 54—70.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1999) Primary, agpaitic and deuteric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at Pegmatite Peak, Bearpaw Mountains, Montana. Mineralogy and Petrology, 67, 85110.CrossRefGoogle Scholar
Chandrasekaran, V. and Srivastava, R.K. (1992) Geochemistry of the Sarnu-Dandali carbonatites, District Barmer, Rajasthan, India. Journal of the Geological Society of India, 39, 321—328.Google Scholar
Chandrasekaran, V., Srivastava, R.K. and Chawade, M.P. (1990) Geochemistry of the alkaline rocks of Sarnu-Dandali area, district Barmer, Rajasthan, India. Journal of the Geological Society of India, 36, 365—382.Google Scholar
Czamanske, G.K. and Dillet, B. (1986) Chevkinite, allanite, and sphene in high-level granitic plutons associated with the Questa caldera and the Rio Grande Rift, New Mexico, U.S.A. 14th General Meeting of the International Mineralogical Association, Abstracts with Programs, 85.Google Scholar
de Hoog, J.C. and van Bergen, M.J. (2000) Volatile- induced transport of HFSE, REE, Th and U in arc magmas: evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia). Contributions to Mineralogy and Petrology, 139, 485502.CrossRefGoogle Scholar
Della Ventura, G., Williams, C.T., Raudsepp, M., Bellatreccia, F., Caprilli, E. and Giordano, G. (2001) Perrierite-(Ce) and zirconolite from a syenitic ejectum of the Roccamonfina volcano (Latium, Italy): implications for the mobility of Zr, Ti and REE in volcanic environments. Neues Jahrbuch für Mineralogie Monatshefte, 385-402.Google Scholar
Duchesne, J.-C. and Wilmart, E. (1997) Igneous charnockites and related rocks from the Bjerkreim- Sokndal layered intrusion (SW Norway): a jotunite (hypersthene monzodiorite)-derived A-type granitoid suite. Journal of Petrology, 38, 337370.CrossRefGoogle Scholar
Exley, R.A. (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. Earth and Planetary Science Letters, 48, 97110.CrossRefGoogle Scholar
Gottardi, G. (1960) The crystal structure of perrierite. American Mineralogist, 45, 114.Google Scholar
Haggerty, S.E. and Mariano, A.N. (1983) Strontian- loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Parana Basin carbonatites, South America. Contributions to Mineralogy and Petrology, 84, 365381.CrossRefGoogle Scholar
Harley, S.L. (1994) Mg-Al yttrian zirconolite in a partially melted sapphirine granulite, Vestfold Hills, East Antarctica. Mineralogical Magazine, 58, 259269.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Hokada, T. (2007) Perrierite in sapphirine-quartz gneiss: geochemical and geochronological features and implications for accessory-phase paragenesis of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 102, 4449.CrossRefGoogle Scholar
Huraiova, M., Konecn, P. and Hurai, V. (2007) Chevkinite-(Ce)-REE-Ti silicate from syenite xe- noliths in the Pincina basaltic maar near Lucenec (Southern Slovakia). Mineralia Slovaca, 39, 255268. (in Slovak, with English summary).Google Scholar
Ito, J. (1967) A study of chevkinite and perrierite. American Mineralogist, 52, 10941104.Google Scholar
Jiang, N. (2006) Hydrothermal alteration of chevkinite- (Ce) in the Shuiquangou syenitic intrusion, northern China. Chemical Geology, 227, 100112.CrossRefGoogle Scholar
Li, G., Yang, G., Ma, Z., Shi, N., Xiong, M., Fan, H. and Sheng, G. (2005) Crystal structure of natural non- metamict Ti- and Fe2+-rich chevkinite-(Ce). Acta Geologica Sinica, 79, 325331.Google Scholar
Lima-de-Faria, J. (1962) Heat treatment of chevkinite and perrierite. Mineralogical Magazine, 33, 4247.CrossRefGoogle Scholar
Macdonald, R. and Belkin, H.E. (2002) Compositional variation in minerals of the chevkinite group. Mineralogical Magazine, 66, 10751098.CrossRefGoogle Scholar
Mashima, H., Akai, J., Nakamuta, Y. and Matsubara, S. (2008) Orthorhombic polymorph of rengeite from Ohmi region, central Japan. American Mineralogist, 93, 11531157.CrossRefGoogle Scholar
Mitchell, R.S. (1966) Virginia metamict minerals: perrierite and chevkinite. American Mineralogist, 51, 13941405.Google Scholar
Miyajima, H., Matsubara, S., Miyawaki, R., Yokoyama, K. and Hirokawa, K. (2001) Rengeite, Sr4ZrTi4Si4O22, a new mineral, the Sr-Zr analogue of perrierite from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan. Mineralogical Magazine, 65, 111120.CrossRefGoogle Scholar
Miyajima, H., Miyawaki, R. and Ito, K. (2002) Matsubaraite, Sr4Ti5(Si2O7)2O8, a new mineral, the Sr-Ti analogue of perrierite in jadeitite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan. European Journal of Mineralogy, 14, 11191128.CrossRefGoogle Scholar
Miyawaki, R., Matsubara, S. and Miyajima, H. (2002) The crystal structure of rengeite, Sr4ZrTi4(Si2O7)2O8 . Journal of Mineralogical and Petrological Sciences, 97, 712.CrossRefGoogle Scholar
Monchoux, P., Fontan, F., de Parseval, P., Martin, R.F. and Wang, R.C. (2006) Igneous albitite dikes in orogenic lherzolites, Western Pyrenees, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. 1. Mineralogical Associations. The Canadian Mineralogist, 44, 817842.CrossRefGoogle Scholar
Nickel, E.H. and Mandarino, J.A. (1987) Procedures involving the IMA CNMMN, and guidelines on mineral nomenclature. The Canadian Mineralogist, 25, 353377.Google Scholar
Parodi, G.C., Della Ventura, G., Montana, A. and Raudsepp, M. (1994) Zr-rich non metamict perrier- ite-(Ce) from holocrystalline ejecta in the Sabatini volcanic complex (Latium, Italy). Mineralogical Magazine, 58, 607613.CrossRefGoogle Scholar
Popov, V.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C., McCammon, C. and Bazhenova, L.F. (2001) Polyakovite-(Ce), (REE,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2 (Ti,Nb)2Si4O22, a new metamict mineral species from the Ilmen Mountains, southern Urals, Russia: mineral description and crystal chemistry. The Canadian Mineralogist, 39, 10951104.CrossRefGoogle Scholar
Portnov, A.M. (1964) Strontium perrierite in the North Baikal region. Doklady of the Academy of Science USSR: Earth Sciences Section, 156, 118120.Google Scholar
Portnov, A.M. (2001) Mineralogy of the Burpala alkaline massif (North of Lake Baikal). Mineralogical Record, 32, 42.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Price, R.H., Nimick, F.B., Connolly, J.R., Keil, K., Schwartz, B.M. and Spence, S.J. (1985) Preliminary characterization of the petrologic, bulk, and mechanical properties of a lithophysal zone within the Topopah Spring Member of the Paintbrush Tuff. Report SAND84-0860, Sandia National Laboratory. Albuquerque, New Mexico. 115 pp.Google Scholar
Raade, G. (1970) Perrierite from the Sogndal anorthosite, south Norway. Norsk Geologisk Tidsskrift, 50, 241—243.Google Scholar
Sabina, A.P. (1978) Some new mineral occurrences in Canada. Current Research, Part A. Geological Survey of Canada, 253—258.CrossRefGoogle Scholar
Sabina, A.P. (2007) Rocks and minerals for the collector. Miscellaneous Reports, 48. Geological Survey of Canada, 249 pp.Google Scholar
Savel’eva, V.B. and Karmanov, N.S. (2008) REE minerals of alkaline metasomatic rocks in the Main Sayan Fault. Geology of Ore Deposits, 50, 681—696.CrossRefGoogle Scholar
Segalstad, T.V. and Larsen, A.O. (1978) Chevkinite and perrierite from the Oslo region, Norway. American Mineralogist, 63, 499—505.Google Scholar
Semenov, Y.I., Kulakov, M.P., Kostynina, M.Y., Kazakova, M.Y. and Dudykina, A.S. (1966) Scandium content in the quartz-fluorite pegmatites of Kazakhstan. Geokhimiya, 2, 244—246.Google Scholar
Shen, G., Yang, G. and Xu, J. (2005) Maoniupingite- (Ce): A new rare-earth mineral from the Maoniuping rare-earth deposit in Mianning, Sichuan, China. Sedimentary Geology and Tethyan Geology, 25, 210—216. (in Chinese with English abstract).Google Scholar
Shimazaki, H., Yang, Z., Miyawaki, R. and Shigeoka, M. (2008). Scandium-bearing minerals in the Bayan Obo Nb-REE-Fe deposit, Inner Mongolia, China. Resource Geology, 58, 80—86.CrossRefGoogle Scholar
Sisson, T.W., Grove, T.L. and Coleman, D.S. (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contributions to Mineralogy and Petrology, 126, 81108.CrossRefGoogle Scholar
Sokolova, E., Hawthorne, F.C., Della Ventura, G. and Kartashov, P.M. (2004) Chevkinite-(Ce): crystal structure and the effect of moderate radiation- induced damage on site-occupancy refinement. The Canadian Mineralogist, 42, 10131025.CrossRefGoogle Scholar
Song, R., Ding, K. and Li, Z. (1999) Site occupancies of iron in saimaite and chevkinite. Chinese Science Bulletin, 44, 2274—2276.CrossRefGoogle Scholar
Srivastava, R.K., Wall, F. and Le Bas, M.J. (1993) Sr- REE rich carbonatite dyke from Sarnu-Dandali, Barmer, Rajasthan. Current Science, 65, 170—171.Google Scholar
Tilley, C.E. (1949) An alkali facies of granite at granite- dolomite contacts in Skye. Geological Magazine, 86, 81—93.CrossRefGoogle Scholar
Troll, V., Sachs, P.M., Schmincke, H.-U. and Sumita, M. (2003) The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study. Contributions to Mineralogy and Petrology, 145, 730—741.CrossRefGoogle Scholar
van Bergen, M.J. (1984) Perrierite in siliceous lavas from Mt Amiata, central Italy. Mineralogical Magazine, 48, 553—556.CrossRefGoogle Scholar
Verplanck, P.L., Farmer, G.L., McCurry, M. and Mertzman, S.A. (1999) The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico. Journal of Petrology, 40, 653—678.CrossRefGoogle Scholar
Vlach, S.R. and Gualda, G.A. (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98121.CrossRefGoogle Scholar
Wall, F., Le Bas, M.J. and Srivastava, R.K. (1993) Calcite and carbocernaite exsolution and cotectic textures in a Sr, REE-rich carbonatite dyke from Rajasthan, India. Mineralogical Magazine, 57, 495—513.CrossRefGoogle Scholar
Wang, R.-C., Wang, D.-Z., Zhao, G.-T., Lu, J.-J., Chen, X.-M. and Xu, S.-J. (2001) Accessory mineral record of magma-fluid interaction in the Laoshan I- and A- type granitic complex, Eastern China. Physics and Chemistry of the Earth, 26, 835—849.Google Scholar
Xu, J., Yang, G., Li, G., Wu, Z. and Shen, G. (2008) Dingdaohengite-(Ce) from the Bayan Obo REE-Nb- Fe mine, China: Both a true polymorph of perrierite- (Ce) and a titanic analog at the C1 site of chevkinite subgroup. American Mineralogist, 93, 740—744.CrossRefGoogle Scholar
Yakovenchuk, V.N., Ivanyuk, G.Yu., Pakhomovsky, Ya.A. and Menshikov, Yu.P. (2005) Khibiny. (F. Wall, editor). Laplandia Minerals: Apatity. Published in association with the Mineralogical Society of Great Britain and Ireland. 468 pp.Google Scholar
Yang, Z., Fleck, M., Smith, M., Tao, K., Song, R. and Zhang, P. (2002) The crystal structure of natural Fe- rich chevkinite-(Ce). European Journal of Mineralogy, 14, 969—975.CrossRefGoogle Scholar
Yang, Z., Li, H., Liu, M. and Pertlik, F. (2007) Crystal chemistry of iron in non-metamict chevkinite-(Ce): valence state and site occupation properties. Journal of Rare Earths, 25, 238—242.CrossRefGoogle Scholar
Zhang, P., Yang, Z., Tao, K. and Yang, X. (1995) Mineralogy and Geology of Rare Earths in China. Science Press, Beijing. 209 pp.Google Scholar
Supplementary material: File

Macdonald et al. supplementary material

Supplementary Table 1a

Download Macdonald et al. supplementary material(File)
File 201.7 KB
Supplementary material: File

Macdonald et al. supplementary material

Supplementary Table 1b

Download Macdonald et al. supplementary material(File)
File 78.3 KB
Supplementary material: File

Macdonald et al. supplementary material

Supplementary Table 1c

Download Macdonald et al. supplementary material(File)
File 39.4 KB
Supplementary material: File

Macdonald et al. supplementary material

Supplementary Table 2

Download Macdonald et al. supplementary material(File)
File 277.5 KB
Supplementary material: File

Macdonald et al. supplementary material

Supplementary Table 3

Download Macdonald et al. supplementary material(File)
File 323.1 KB
Supplementary material: File

Macdonald et al. supplementary material

Supplementary info

Download Macdonald et al. supplementary material(File)
File 50.7 KB