Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:47:49.677Z Has data issue: false hasContentIssue false

The composition of diopside solid solutions, and of liquids, in equilibrium with forsterite, plagioclase, and liquid in the system Na2O-CaO-MgO-Al2O3-SiO2 and in remelted rocks from 1 bar to 12 kbar

Published online by Cambridge University Press:  05 July 2018

Gordon M. Biggar*
Affiliation:
Department of Geology, University of Edinburgh, Edinburgh EH9 3JW

Abstract

Subsolidus diopside compositions and coexisting diopside and liquid compositions which are also in equilibrium with anorthite and forsterite in the system CaO-MgO-Al2O3-SiO2 were determined by X-ray diffraction and by electron microprobe in samples equilibrated at 1 bar and at 7 kbar. Along with previous data from the literature and using a recently published grid relating diffraction peaks to composition, results from both techniques are satisfactorily reconciled. At 1 bar, diopside composition (moles, Di = CaMgSi2O6, En = Mg2Si2O6, CaTs = CaAl2Si2O6) in equilibrium with anorthite, forsterite, and spinel (analogous to alkali basalts) are close to Di79CaTs20En1 and those in equilibrium with anorthite, forsterite, and pigeonite (analogous to tholeiitic basalt) are close to Di75CaTs3En22. At 7 kbar the equivalent compositions are Di69CaTs28En3 and Di69CaTs26En5 respectively.

In the system CaO-Na2O-MgO-Al2O3-SiO2, electron microprobe analyses of augites and liquids at 1 bar confirm the changes expected in the loci of liquids and show that the low Na2O (< 0.50 wt.%) augites are similar to those in CaO-MgO-Al2O3-SiO2. At 7 kbar the orthopyroxene field has expanded sufficiently and augite was not encountered in the limited range of samples studied.

In remelted rocks the augite compositions at 1 bar are similar to the compositions of augites in low pressure effusive rocks. At 2–15 kbar, the available data in the literature for dry basalts show that experimentally recrystallized augites are very sub-calcic and very aluminous, and no natural equivalents exist in plutonic gabbros or in ophiolitic rocks. This discrepancy is not resolved but either the experimental pyroxenes are metastable or the pyroxenes presently in the rocks are not the pristine compositions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bence, A. E., Papike, J. L, and Ayuso, R. A. (1975) J. Geophys. Res. 80, 4775–804.CrossRefGoogle Scholar
Bender, J. F., Hodges, F. N., and Bence, A. E. (1978) Earth Planet. Sci. Lett. 41, 277302.CrossRefGoogle Scholar
Benna, P., Bruno, E., and Facchinelli, A. (1981) Contrib. Mineral. Petrol. 78, 272–8.CrossRefGoogle Scholar
Biggar, G. M. (1969) Progr. Exptl. Petrol. 1, 97104.Google Scholar
Biggar, G. M. (1972) Mineral. Mag. 38, 768–70.CrossRefGoogle Scholar
Biggar, G. M. (1974) Contrib. Mineral. Petrol. 46, 159–67.CrossRefGoogle Scholar
Biggar, G. M. (1981a) Bull. Minéral. 104, 375–80.CrossRefGoogle Scholar
Biggar, G. M. (1981b) Progr. Exptl. Petrol. 5, 96–8.Google Scholar
Biggar, G. M. (1983) Mineral. Mag. 47, 161–76.CrossRefGoogle Scholar
Biggar, G. M. and Humphries, D. J. (1981) Ibid. 44, 309–14.Google Scholar
Biggar, G. M. and Kadik, A. A. (1981) Progr. Exptl. Petrol. 5, 122–6.Google Scholar
Boivin, P. (1980) Bull. Minéral. 103, 491502.CrossRefGoogle Scholar
Brown, G. M. (1957) Mineral. Mag. 21, 511–43.Google Scholar
Davidson, L. R. (1968) Contrib. Mineral. Petrol. 19, 239–59.CrossRefGoogle Scholar
Fujii, T., and Bougault, H. Earth Planet. Sci. Lett. 62, 283-95.CrossRefGoogle Scholar
Green, D. H. (1973) Ibid. 19, 3753.Google Scholar
Green, D. H., Hibberson, W. O., and Jacques, A. L. (1979) In Petrogenesis of mid-ocean ridge basalts (McElhinny, , ed.). Academic Press, London.Google Scholar
Green, D. H. and Ringwood, A. E. (1967) Contrib. Mineral. Petrol. 15, 103–90.CrossRefGoogle Scholar
Grove, T. L., Gerlach, D. C, and Sando, T. W. (1982) Contrib. Mineral. Petrol. 80, 160–82.CrossRefGoogle Scholar
Helz, R. T. (1973) J. Petrol. 14, 249302.CrossRefGoogle Scholar
Herzberg, C. T. (1975) Phase assemblages in the system Ca0-Na20-Mg0-Al203-Si02 in the plagioclase-lherzolite and spinel-lherzolite mineral facies. Ph.D. thesis, Edinburgh.Google Scholar
Humphries, D. J. (1975) Phase equilibrium studies of some basalt-like compositions in the system CaO-MgO-Al203-Na20-Fe-02 . Ph.D. thesis, Edinburgh.Google Scholar
Hytonen, K., and Schairer, J. F. (1961) Carnegie Inst. Wash. Yearb. 60, 125–41.Google Scholar
Irvine, T. N., and Sharpe, M. R. (1982) Ibid. 81, 294303.Google Scholar
Jacques, A. L., and Green, D. H. (1980) Contrib. Mineral. Petrol. 73, 287310.CrossRefGoogle Scholar
Jakobsson, S. P., Jonsson, J., and Shido, F. (1978) J. Petrol.. 19, 669705.CrossRefGoogle Scholar
Leterrier, J., Maury, R. C., Thonon, P., Girard, D., and Marchal, M. (1982) Earth Planet. Sci. Lett. 59, 139–54.CrossRefGoogle Scholar
Lindsley, D. H., and Andersen, D. J. (1983) J. Geophys. Res. (Suppl. 13th Lunar Sci. Conf.) 88, A887A906.CrossRefGoogle Scholar
Mori, T., and Biggar, G. M. (1981) Progr. Exptl. Petrol. 5, 144–5, 147.Google Scholar
Muir, I. D., and Tilley, C. E. (1964) J. Petrol. 5, 409–34.CrossRefGoogle Scholar
O'Hara, M. J. (1976) Prog. Exptl. Petrol. 3, 103–26.Google Scholar
Presnall, D. C., Dixon, J. R., O'Donnell, T. H., Brenner, N. L., Schrock, R. L., and Dycus, D. W. (1978) Contrib. Mineral. Petrol. 66, 1232–41.CrossRefGoogle Scholar
Presnall, D. C., Dixon, J. R., O'Donnell, T. H. and Dixon, S. A. (1979) J. Petrol. 20, 335.CrossRefGoogle Scholar
Schiffman, P., and Lofgren, G. E. (1982) J. Geol. 90, 4978.CrossRefGoogle Scholar
Schweitzer, E. (1982) Am. Mineral. 67, 54–8.Google Scholar
Sigurdsson, H. (1981) J. Geophys. Res. 86, 9483–502.CrossRefGoogle Scholar
Stolper, E. (1980a) Geochim. Cosmochim. Acta (Suppl. 11th Lunar Sci. Conf.), 235-50.Google Scholar
Stolper, E. (1980b) Contrib. Mineral. Petrol. 74, 1327.CrossRefGoogle Scholar
Takahashi, E. (1980) Carneg. Inst. Wash. Yearb. 79, 271–76.Google Scholar
Takahashi, E. and Kushiro, I. (1983) Am. Mineral. 68, 859–73.Google Scholar
Thompson, R. N. (1974) Mineral. Mag. 39, 768–87.CrossRefGoogle Scholar
Thompson, R. N. (1975) Contrib. Mineral. Petrol. 52, 213–32.CrossRefGoogle Scholar
Walker, D., Shibata, T., and De Long, S. E. (1979) Ibid. 70, 111–25.Google Scholar
Wass, S. Y. (1979) Lithos 12, 115–32.CrossRefGoogle Scholar
Wilkinson, J. F. G., and Taylor, S. R. (1980) Contrib. Mineral. Petrol. 75, 225–33.CrossRefGoogle Scholar
Yang, H.-Y. (1973) Am. J. Sci. 273, 488–97.CrossRefGoogle Scholar