Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:51:46.390Z Has data issue: false hasContentIssue false

The complex mechanism of Ti4+ incorporation into litidionite from the Somma–Vesuvius volcano, Italy

Published online by Cambridge University Press:  16 February 2022

Giuseppina Balassone
Affiliation:
Department of Earth Science, Environment and Resources (DiSTAR), University of Naples Federico II, Via Cintia, 26, Naples I-80126, Italy National Institute of Geophysics and Volcanology (INGV), Vesuvius Observatory, Via Diocleziano I-80124 Naples, Italy
Taras L. Panikorovskii*
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184200, Russia Department of Crystallography, St. Petersburg State University, 7–9 Universitetskaya, Naberezhnaya, St. Petersburg 199034, Russia
Annamaria Pellino
Affiliation:
Department of Earth Science, Environment and Resources (DiSTAR), University of Naples Federico II, Via Cintia, 26, Naples I-80126, Italy
Ayya V. Bazai
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184200, Russia
Vladimir N. Bocharov
Affiliation:
Geo Environmental Centre “Geomodel”, Saint-Petersburg State University, Ul'yanovskaya Str. 1, St. Petersburg 198504, Russia
Sergey V. Krivovichev
Affiliation:
Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184200, Russia Department of Crystallography, St. Petersburg State University, 7–9 Universitetskaya, Naberezhnaya, St. Petersburg 199034, Russia
Carmela Petti
Affiliation:
Mineralogical Museum, Centre of Natural Sciences Museums, University of Naples Federico II, Via Mezzocannone 8, Naples I-80134, Italy
Piergiulio Cappelletti
Affiliation:
Department of Earth Science, Environment and Resources (DiSTAR), University of Naples Federico II, Via Cintia, 26, Naples I-80126, Italy Mineralogical Museum, Centre of Natural Sciences Museums, University of Naples Federico II, Via Mezzocannone 8, Naples I-80134, Italy
Nicola Mondillo
Affiliation:
Department of Earth Science, Environment and Resources (DiSTAR), University of Naples Federico II, Via Cintia, 26, Naples I-80126, Italy Department of Earth Sciences, Natural History Museum, London, UK
*
*Author for correspondence: Taras L. Panikorovskii, Email: [email protected]

Abstract

For this study, the rare Cu-bearing silicate fumarolic assemblages from the Somma–Vesuvius volcano, Italy, characterised by the rare mineral litidionite, CuKNaSi4O10, were investigated. We report new data about Cu- and Ti-bearing phases found in these mineralisations, in which Ti-bearing litidionite occurs together with kamenevite, perovskite and rutile. Ti-bearing litidionite appears on the latest stages of partial crystallisation of Ti-bearing silica glass. Incorporation of Ti4+ into the litidionite crystal structure was investigated in detail. The Raman spectra of Ti-bearing litidionite contains an intense band at 597 cm−1 related to anti-symmetric bending vibrations of Si‒O bonds or overlapping stretching vibrations of Ti‒O bonds. The bands in the range 350‒500 cm−1 correspond to symmetric bending vibrations of O‒Si‒O bonds and overlapping stretching vibrations of Ti‒O bonds. The crystal structure of Ti-litidionite has been refined in the P$\bar{1}$ space group, a = 6.9699(7), b = 7.9953(10), c = 9.8227(10) Å, α = 105.186(9), β = 99.458(8) and γ = 114.489(10) to R1 = 0.064 for 1726 unique observed reflections. The refinement of the site-occupation factors confirmed the presence of Ti at a five-coordinated M site. The mean bond distance of 2.125 Å for the M site agrees with its refined occupancy (Ti0.32Cu0.30Ca0.29Fe0.09)1.00. The incorporation of Ti into the litidionite structure is accompanied by the complex heteropolyhedral substitution according to the scheme VTi4+ + VII–VIII□ + IVAl3+VCu2+ + VII-VIII(Na,K)+ + IVSi4+. Two possible configurations for the phase with maximal TiO2 content (12.06 wt.% or 0.56 Ti apfu) CuTiK□Na2Si7AlO20 (Z = 1) or CuTiK2Na□Si7AlO20 (Z = 1) have been proposed.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Agilent Technologies (2014) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Aksenov, S.M., Rastsvetaeva, R.K., Chukanov, N.V. and Kolitsch, U. (2014) Structure of calcinaksite KNa[Ca(H2O)][Si4Ol0], the first hydrous member of the litidionite group of silicates with [Si8O20]8− tubes. Acta Crystallographica, B70, 768775.Google Scholar
Arrighi, S., Principe, C. and Rosi, M. (2001) Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bulletin of Volcanology, 63, 126150.10.1007/s004450100130CrossRefGoogle Scholar
Avanzinelli, R., Cioni, R., Conticelli, S., Giordano, G., Isaia, R., Mattei, M., Melluso, L. and Sulpizio, R. (2017) The Vesuvius and the other Volcanoes of Central Italy. Geological Field Trips, 9 (1.1), http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/geological-field-trips [accessed on 5 January 2021].10.3301/GFT.2017.01CrossRefGoogle Scholar
Balassone, G., Franco, E., Mattia, C.A. and Puliti, R. (2004) Indialite in xenolithic rocks from Somma–Vesuvius volcano (Southern Italy): crystal chemistry and petrogenetic features. American Mineralogist, 89, 16.10.2138/am-2004-0101CrossRefGoogle Scholar
Balassone, G., Petti, C., Mondillo, N., Panikorovskii, T.L., de Gennaro, R., Cappelletti, P., Altomare, A., Corriero, N., Cangiano, M. and D'orazio, L. (2019) Copper minerals at vesuvius volcano (Southern Italy): A mineralogical review. Minerals, 9, 730.10.3390/min9120730CrossRefGoogle Scholar
Balić-Žunić, T., Garavelli, A., Jakobsson, S.P., Jonasson, K., Katerinopoulos, A., Kyriakopoulos, K. and Acquafredda, P. (2016) Fumarolic minerals: An overview of active European volcanoes. Pp. 267322 in: Updates in Volcanology – From Volcano Modelling to Volcano Geology (Nemeth, K., editor). InTech Open Access Publishers, London, UK.Google Scholar
Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.10.1107/S0567740874004560CrossRefGoogle Scholar
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S.J. (2019) On the application of the IMA−CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.10.1180/mgm.2019.55CrossRefGoogle Scholar
Brandão, P., Rocha, J., Reis, M.S., dos Santos, A.M. and Jin, R. (2009) Magnetic properties of compounds. Journal of Solid State Chemistry, 182, 253258.10.1016/j.jssc.2008.10.024CrossRefGoogle Scholar
Castor, S.B. and Ferdock, G.C. (2003) Minerals of Nevada. Nevada Bureau of Mines and Geology, Special Publication, 31, Nevada, USA, 560 pp.Google Scholar
Celestian, A.J., Powers, M. and Rader, S. (2013) In situ Raman spectroscopic study of transient polyhedral distortions during cesium ion exchange into sitinakite. American Mineralogist, 98, 11531161.10.2138/am.2013.4349CrossRefGoogle Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Blass, G., Varlamov, D.A., Pekov, I.V., Belakovskiy, D.I. and Gurzhiy, V.V. (2015) Calcinaksite, KNaCa(Si4O10)⋅H2O, a new mineral from the Eifel volcanic area, Germany. Mineralogy and Petrology, 109, 397404.10.1007/s00710-015-0376-4CrossRefGoogle Scholar
Cioni, R., Santacroce, R. and Sbrana, A. (1999) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma–Vesuvius caldera. Bulletin of Volcanology, 60, 207222.10.1007/s004450050272CrossRefGoogle Scholar
Cioni, R., Bertagnini, A., Santacroce, R. and Andronico, D. (2008) Explosive activity and eruption scenarios at Somma–Vesuvius (Italy): Towards a new classification scheme. Journal of Volcanology and Geothermal Research, 178, 33134610.1016/j.jvolgeores.2008.04.024CrossRefGoogle Scholar
Di Renzo, V., Di Vito, M. A., Arienzo, I., Carandente, A., Civetta, L., D'antonio, M. and Tonarini, S. (2007) Magmatic history of Somma–Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). Journal of Petrology, 48, 753784.10.1093/petrology/egl081CrossRefGoogle Scholar
Dolivo-Dobrovolsky, D.D. (2016) MINAL, free software. Saint-Petersburg [Accessed from http://www.dimadd.ru].Google Scholar
Filippi, M., Doušová, B. and Machovič, V. (2007) Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma, 139, 154170.10.1016/j.geoderma.2007.01.015CrossRefGoogle Scholar
Golovachev, V.P., Drozdov, Y.N., Kuz'min, E.A. and Belov, N.V. (1970) The crystal structure of fenaksite, NaKFeSi4O10. Doklady Akademii Nauk SSSR, 194, 818820 [in Russian].Google Scholar
Khomyakov, A.P., Kurova, T.A. and Nechelyustov, G.N. (1992) Manaksite NaKMnSi4O10: a new mineral. Zapiski RMO, 121, 112114.Google Scholar
Kornev, A.N., Maksimov, B.A., Lider, V.V., Ilyukhin, V.V. and Belov, N.V. (1972) Crystal structure of Na2CuSi4O10. Soviet Physics Doklady, 17, 735737.Google Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin, Germany.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.10.1107/S0021889811038970CrossRefGoogle Scholar
Oleksiienko, O., Wolkersdorfer, C. and Sillanpää, M. (2017) Titanosilicates in cation adsorption and cation exchange – A review. Chemical Engineering Journal, 317, 570585.10.1016/j.cej.2017.02.079CrossRefGoogle Scholar
Pakhomovsky, Y.A., Panikorovskii, T.L., Yakovenchuk, V.N., Ivanyuk, G.Y., Mikhailova, J.A., Krivovichev, S. V., Bocharov, V.N. and Kalashnikov, A.O. (2018) Selivanovaite, NaTi3(Ti,Na,Fe,Mn)4[(Si2O7)2O4(OH,H2O)4]⋅nH2O, a new rock-forming mineral from the eudialyte-rich malignite of the Lovozero alkaline massif (Kola Peninsula, Russia). European Journal of Mineralogy, 30, 525535.10.1127/ejm/2018/0030-2740CrossRefGoogle Scholar
Panikorovskii, T.L., Chukanov, N.V., Aksenov, S.M., Mazur, A.S., Avdontseva, E.Y., Shilovskikh, V.V. and Krivovichev, S.V. (2017a) Alumovesuvianite, Ca19Al(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group member from the Jeffrey mine, Asbestos, Estrie region, Québec, Canada. Mineralogy and Petrology, 111, 833842.10.1007/s00710-017-0495-1CrossRefGoogle Scholar
Panikorovskii, T.L., Chukanov, N.V., Rusakov, V.S., Shilovskikh, V.V., Mazur, A.S., Balassone, G., Ivanyuk, G.Y. and Krivovichev, S.V. (2017b) Vesuvianite from the Somma–Vesuvius Complex: New Data and Revised Formula. Minerals, 7, 248.10.3390/min7120248CrossRefGoogle Scholar
Panikorovskii, T.L., Shilovskikh, V.V., Avdontseva, E.Y., Zolotarev, A.A., Karpenko, V.Y., Mazur, A.S., Yakovenchuk, V.N., Bazai, A.V., Krivovichev, S.V. and Pekov, I.V. (2017c) Magnesiovesuvianite, Ca19Mg(Al,Mg)12Si18O69(OH)9, a new vesuvianite-group mineral. Journal of Geosciences, 62, 2536.10.3190/jgeosci.229CrossRefGoogle Scholar
Panikorovskii, T.L., Shilovskikh, V.V., Avdontseva, E.Y., Zolotarev, A.A., Pekov, I.V., Britvin, S.N., Hålenius, U. and Krivovichev, S.V. (2017d) Cyprine, Ca19Cu2+(Al,Mg,Mn)12Si18O69(OH)9, a new vesuvianite-group mineral from the Wessels mine, South Africa. European Journal of Mineralogy, 29, 295306.10.1127/ejm/2017/0029-2592CrossRefGoogle Scholar
Pekov, I.V., Sandalov, F.D., Koshlyakova, N.N., Vigasina, M.F., Polekhovsky, Y.S., Britvin, S.N., Sidorov, E.G. and Turchkova, A.G. (2018) Copper in natural oxide spinels: the new mineral thermaerogenite CuAl2O4, cuprospinel and Cu-enriched varieties of other spinel-group members from fumaroles of the Tolbachik Volcano, Kamchatka, Russia. Minerals, 8, 498, https://doi.org/10.3390/min8110498.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Britvin, S.N., Turchkova, A.G. and Pushcharovsky, D.Y. (2019) Kamenevite, K2TiSi3O9⋅H2O, a new mineral with microporous titanosilicate framework from the Khibiny alkaline complex, Kola peninsula, Russia. European Journal of Mineralogy, 31, 557564.10.1127/ejm/2019/0031-2825CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3176 in: Electron Probe Quantitation (Heinrich, K. and Newbury, D., editors). Plenum Press, New York.10.1007/978-1-4899-2617-3_4CrossRefGoogle Scholar
Pozas, J.M., Rossi, G. and Tazzoli, V. (1975) Re-examination and crystal structure analysis of litidionite. American Mineralogist, 60, 471474.Google Scholar
Rozhdestvenskaya, I.V., Bannova, I.I., Nikishova, L.V. and Soboleva, T.V. (2004) The crystal structure of fenaksite K2Na2Fe2Si8O20. Doklady of the Russian Academy of Sciences, 398, 10291033.Google Scholar
Scacchi, E. (1880) Lapilli azzurri del Vesuvio. Atti della Regia Accademia delle Scienze Fisiche e Matematiche di Napoli, 19, 175179.Google Scholar
Scacchi, A. (1881) Nuovi sublimati del cratere vesuviano trovati nel mese di ottobre del 1880 (Memoria 1880). Atti della Reale Accademia delle Scienze Fisiche e Matematiche di Napoli, Serie 1, 9, 110.Google Scholar
Shchipalkina, N.V., Pekov, I.V., Britvin, S.N., Koshlyakova, N.N., Vigasina, M.F. and Sidorov, E.G. (2019) A new mineral ferrisanidine, K[Fe3+Si3O8], the first natural feldspar with species-defining iron. Minerals, 9, 770.10.3390/min9120770CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I. V., Britvin, S.N., Koshlyakova, N.N. and Sidorov, E.G. (2020a) Arsenic and phosphorus in feldspar framework: sanidine–filatovite solid solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. Physics and Chemistry of Minerals, 47, 115.10.1007/s00269-019-01067-5CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020b) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.10.5194/ejm-32-101-2020CrossRefGoogle Scholar
Shchipalkina, N. V., Pekov, I. V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N. V., Varlamov, D.A. and Sidorov, E.G. (2020c) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia. Part 2: Tectosilicates. European Journal of Mineralogy, 32, 121136.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
StatSoft Inc. (2008) Statistica 8. StatSoft. Inc., Tulsa, OK74104, USA.Google Scholar
Yakovenchuk, V., Pakhomovsky, Y., Panikorovskii, T.L., Zolotarev, A., Mikhailova, J., Bocharo, V., Krivovichev, S. and Ivanyuk, G. (2019) Chirvinskyite, (Na,Ca)13(Fe,Mn,□)2(Ti,Nb)2(Zr,Ti)3(Si2O7)4(OH,O,F)12, a new mineral with a modular wallpaper structure, from the Khibiny Alkaline Massif (Kola Peninsula, Russia). Minerals, 9, 219.10.3390/min9040219CrossRefGoogle Scholar
Zambonini, F. (1910) Mineralogia Vesuviana. Atti Real Accademia Scienze Fisiche e Naturali di Napoli, Series 2, 14, 368 pp.Google Scholar
Zambonini, F. (1935) Mineralogia Vesuviana. SIEM Napoli, XIII, 468 pp.Google Scholar
Supplementary material: File

Balassone et al. supplementary material

Balassone et al. supplementary material

Download Balassone et al. supplementary material(File)
File 22.4 KB