Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-09T15:41:40.371Z Has data issue: false hasContentIssue false

Complex impedance spectroscopy and ionic transport properties of natural leucite, K0.90Na0.08[Al0.98Si2.02]O6, as a function of temperature and pressure

Published online by Cambridge University Press:  05 July 2018

R. L. Jones
Affiliation:
Science and Technology Facilities Council Laboratory, Daresbury, Warrington WA4 4AD, UK
M. Thrall
Affiliation:
Science and Technology Facilities Council Laboratory, Daresbury, Warrington WA4 4AD, UK
C. M. B. Henderson*
Affiliation:
Science and Technology Facilities Council Laboratory, Daresbury, Warrington WA4 4AD, UK School of Earth Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
*

Abstract

The temperature (T) and pressure (P) dependence of dielectric and conductivity properties of natural leucite were determined using complex impedance spectroscopy at frequencies from 103 to 106 Hz. Experiments were carried out in a Walker multi-anvil cell at 1 atm and P from 2.5 to 6 GPa and at T from 350 to 800°C. At pressure >6 GPa and temperature >790°C the leucite broke down to kalsilite+sanidine and dielectric properties for this phase assemblage are given at 6.0–7.0 GPa and T to 1050°C.

Leucite conductivity increases with increasing T and decreases with increasing P reflecting their different effects on migration of K cations within the channels in the leucite aluminosilicate framework. Activation energies for K+ migration in leucite increase with increasing pressure (0.74–0.97 eV; 70.0–93.2 kJ/mol) and activation volumes for leucite increase with increasing T (6.42–9.51 cm3/mol; 400–700°C). The latter data provide model K+ cation diameters increasing from 2.7 Å at 400°C to 3.2 Å at 700°C. These values are consistent with the earlier suggestion of Palmer and Salje that the ionic mobility mechanism consists of diffusion along <110> rather than along the main channels parallel to <111>.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barik, S.K., Mahapatra, P.K. and Choudhary, R.N.P. (2006) Structural and electrical properties of Na1/2La1/2TiO3 ceramics. Applied Physics A, 85, 199203.CrossRefGoogle Scholar
Boysen, H. (1990) Neutron scattering and phase transitions in leucite. Pp. 334349 in: Phase Transitions in Co-elastic Crystals (Salje, E.K.H., editor). Cambridge Topics in Mineral Physics and Chemistry, 1, Cambridge University Press, Cambridge, UK.Google Scholar
Clark, S.M., Jones, R.L., Jackson, M., Henderson, C.M.B., Parry, S. and Varney, B. (2008) Development of a system for measuring the complex impedance of borosilicate glasses at high pressures and temperatures: Application to the study of Li- and Na-doped borosilicate glasses. Journal of Physics and Chemistry of Solids, 69, 21682171.CrossRefGoogle Scholar
Cole, K.S. and Cole, R.H. (1941) Dispersion and absorption in dielectrics. Journal of Chemical Physics, 9, 341351.CrossRefGoogle Scholar
Faust, G.T. (1963) Phase transitions in synthetic and natural leucite. Schweizerische Mineralogische und Petrographische Mitteilungen, 43, 165195.Google Scholar
Doi, A. (2002) Activation volume and free volume in some ion-conducting glasses and molten salts. Journal of Non-Crystalline Solids, 311, 207210.CrossRefGoogle Scholar
Gatta, G.D., Rotiroti, N., Ballaran, T.B. and Pavese, A. (2008) Leucite at high pressure: Elastic behavior, phase stability, and petrological implications. American Mineralogist, 93, 15881596.CrossRefGoogle Scholar
Gatta, G.D., Sartbaeva, A. and Wells, S.A. (2009) Compression behaviour and flexibility window of the analcime-like feldspathoids: experimental and theoretical findings. European Journal of Mineralogy, 21, 571580.CrossRefGoogle Scholar
Hamann, S.D. (1965) The influence of pressure on electrolytic conduction in alkali silicate glass. Australian Journal of Chemistry, 18, 18.CrossRefGoogle Scholar
Jonscher, A.K. (1999) Dielectric relaxation in solids. Journal of Physics D: Applied Physics, 32, R57R70.CrossRefGoogle Scholar
Lange, R.A., Carmicahel, I.S.E. and Stebbins, J.F. (1986) Phase transitions in leucite (KAlSi2O6), orthorhombic KAlSiO4, and their iron analogues (KFeSi2O6, KFeSiO4). American Mineralogist, 71, 937945.Google Scholar
Liu, L.-G. (1987) High-pressure phase transitions of potassium aluminosilicates with an emphasis on leucite. Contributions to Mineralogy and Petrology, 95, 13.CrossRefGoogle Scholar
Maury, R. (1968 a) Conductibilité électrique des tectonosilicates I. Méthode et résultats expérimentaux. Bulletin de la Société française de Minéralogie et de Cristallographie, 91, 267278.CrossRefGoogle Scholar
Maury, R. (1968 b) Conductibilité électrique des tectonosilicates II. Discussion des résultats expérimentaux. Bulletin de la Société française de Minéralogie et de Cristallographie, 91, 355366.CrossRefGoogle Scholar
Mazzi, F., Galli, G. and Gottardi, G. (1976) The crystal structure of tetragonal leucite. American Mineralogist, 61, 108115.Google Scholar
Palmer, D. (1990) Volume anomaly and the impure ferroelastic phase transition in leucite. Pp. 350367 in: Phase Transitions in Co-elastic Crystals (Salje, E.K.H., editor). Cambridge Topics in Mineral Physics and Chemistry, 1, Cambridge University Press, Cambridge, UK.Google Scholar
Palmer, D.C. and Salje, E.K.H. (1990) Phase transitions in leucite: dielectric properties and transition mechanism. Physics and Chemistry of Minerals, 17, 444452.CrossRefGoogle Scholar
Palmer, D.C., Salje, E.K.H. and Schmahl, W.W. (1989) Phase transitions in leucite: X-ray diffraction studies. Physics and Chemistry of Minerals, 16, 714719.CrossRefGoogle Scholar
Palmer, D.C., Bismayer, U. and Salje, E.K.H. (1990) Phase transitions in leucite: Order parameter behaviour and the Landau potential deduced from Raman spectroscopy and birefringence studies. Physics and Chemistry of Minerals, 17, 259265.CrossRefGoogle Scholar
Palmer, D.C., Dove, M.T., Ibberson, R.M. and Powell, B.M. (1997) Structural behaviour, crystal chemistry, and phase transitions in substituted leucite: Highresolution neutron powder diffraction studies. American Mineralogist, 82, 1629.CrossRefGoogle Scholar
Peacor, D.R. (1968) A high temperature single crystal diffractometer study of leucite, (K,Na)AlSi2O6 . Zeitschrift für Kristallographie, 127, 213224.CrossRefGoogle Scholar
Rüscher, C., Papendick, M., Boysen, H., Putnis, A. and Salje, E. (1987) Dielectric and electron microscopical studies on leucite KAlSi2O6 . Zeitschrift für Kristallographie, 178, 195196.Google Scholar
Sammis, C.G., Smith, J.C. and Schubert, G. (1981) A critical assessment of estimation methods for activation volume. Journal of Geophysical Research, 86, B11, 1070710718.CrossRefGoogle Scholar
Scarfe, C.M., Luth, W.C. and Tuttle, O.F. (1966) An experimental study bearing on the absence of leucite in plutonic rocks. American Mineralogist, 51, 726735.Google Scholar
Scarlato, P., Poe, B.T. and Gaeta, C.F.M. (2004) Highpressure and high-temperature measurements of electrical conductivity in basaltic rocks from Mount Etna, Sicily, Italy. Journal of Geophysical Research, 109, B02210 (11 pp).Google Scholar
Seki, Y. and Kennedy, G.C. (1964) An experimental study on the leucite-pseudoleucite problem. American Mineralogist, 49, 12671280.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Taylor, D. and Henderson, C.M.B. (1968) The thermal expansion of the leucite group of minerals. American Mineralogist, 53, 14761489.Google Scholar
Walker, D., Carpenter, M.A. and Hitch, C.H. (1990) Some simplifications to multi-anvil devices for high pressure experiments. American Mineralogist, 75, 10201028.Google Scholar
Walker, D. (1991) Lubrication, gasketing and precision in multi-anvil experiments. American Mineralogist, 76, 10921100.Google Scholar
Wu, X. and Zheng, Y.-F. (2003) Compensation effect for electrical conductivity and its applications to estimate oxygen diffusivity in minerals. Journal of Geophysical Research, 108, B3/2139, 12 pp.CrossRefGoogle Scholar
Wyart, M.J. (1940) Étude cristallographie d’une leucite artifcielle. Structure atomique et symétrie du mineral. Bulletin de la Société française de Minéralogie et de Cristallographie, 63, 517.Google Scholar