Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:09:36.515Z Has data issue: false hasContentIssue false

Chrysothallite K6Cu6Tl3+Cl17(OH)4·H2O, a new mineral species from the Tolbachik volcano, Kamchatka, Russia

Published online by Cambridge University Press:  02 January 2018

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Vasiliy O. Yapaskurt
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Inna S. Lykova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Bulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*

Abstract

A new mineral chrysothallite K6Cu6Tl3+Cl17(OH)4·H2O was found in two active fumaroles, Glavnaya Tenoritovaya and Pyatno, at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. Chrysothallite seems to be a product of the interactions involving high-temperature sublimate minerals, fumarolic gas and atmospheric water vapour at temperatures not higher than 150ºC. It is associated with belloite, avdoninite, chlorothionite, sanguite, eriochalcite, mitscherlichite, sylvite, carnallite and kainite at Glavnaya Tenoritovaya and with belloite, avdoninite, chlorothionite, eriochalcite, atacamite, halite, kröhnkite, natrochalcite, gypsum and antlerite at Pyatno. The mineral forms equant-to-thick tabular crystals up to 0.05 mm, typically combined in clusters or crusts up to 1 mm across. Crystal forms are: {001}, {100}, {110}, {101} and {102}. Chrysothallite is transparent, bright golden-yellow to light yellow in finely crystalline aggregates. The lustre is vitreous. The mineral is brittle. Cleavage was not observed, the fracture is uneven. Dmeas = 2.95(2), Dcalc = 2.97 g cm–3. Chrysothallite is optically uniaxial (+), ω = 1.720(5), ε = 1.732(5). The Raman spectrum is given. The chemical composition (wt.%, electron-microprobe data, H2O calculated based on the crystal structure data) is: K 15.92, Cu 24.56, Zn 1.38, Tl 13.28, Cl 40.32, H2O(calc.) 3.49, total 98.95. The empirical formula, calculated on the basis of 17 Cl + 5 O a.p.f.u., is: K6.09(Cu5.78Zn0.32)Σ6.10Tl0.97Cl17[(OH)3.80O0.20]·H2O. Chrysothallite is tetragonal, I4/mmm, a = 11.3689(7), c = 26.207(2) Å, V = 3387.3(4) Å3, Z = 4. The strongest reflections of the powder X-ray pattern [d, Å (I)(hkl)] are: 13.20(44)(002); 6.88(100)(112); 5.16(30)(202, 114); 4.027(25)(220); 3.471(28)(206), 3.153(30)(314), 3.075(47)(305), 2.771(38)(316). The crystal structure (solved from single-crystal X-ray diffraction data, R = 0.0898) is unique. Its basic structural unit is a (001) layer of edge-sharing distorted CuCl4(OH)2 octahedra. Two Tl3+ cations occupy the centre of isolated TlCl6 and TlCl4(H2O)2 octahedra connected to each other and to the Cu polyhedral layers via KCl6 and KCl9 polyhedra. The name reflects the bright golden-yellow colour of the mineral (from the Greek χρυσος, gold) and the presence of thallium. Chrysothallite is the second known mineral with species-defining trivalent thallium.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boehme, R., Rath, J., Grunwald, B. and Thiele, G. (1980) Über zwei Modifikationen von Tl2Cl3-valenzgemischten Thallium (I)-hexa-halogenothallaten(III) Tl3(TlCl6). Zeitschrift für Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 35, 13661372.Google Scholar
Brese, N.E. and O‘Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Campostrini, I., Demartin, F. and Gramaccioli, C.M. (2008) Hephaistosite, TlPb2Cl5, a new mineral species from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 46, 701708.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009) Steropesite, Tl3BiCl6, a new thallium bismuth chloride from La Fossa crater, Vulcano, Aeolian islands, Italy. The Canadian Mineralogist, 47, 373380.CrossRefGoogle Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, 341 pp. Glaser, J. (1980) Crystal and molecular structure of potassium tetrachlorothallate(III). Acta Chemica Scandinavica, A34, 7576.Google Scholar
Hoard, J.L. and Goldstein, L. (1935) The structure of potassium hexachlorothalliate dihydrate. Journal of Chemical Physics, 3, 645649.CrossRefGoogle Scholar
Meniaylov, I.A., Nikitina, L.P. and Shapar, V.N. (1980) Geochemical Features of Exhalations of the Great Tolbachik Fissure Eruption. Nauka Publishing, Moscow, 235 pp. [in Russian]. Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2013) Chrysothallite, IMA 2013-008. CNMNC Newsletter No. 16, August 2013, page 2702; Mineralogical Magazine, 77, 26952709.Google Scholar
Roberts, A.C., Venance, K.E., Seward, T.M., Grice, J.D. and Paar, W.H. (2006) Lafossaite, a new mineral from the La Fossa Crater, Vulcano, Italy. Mineralogical Record, 37, 165168.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014a) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. I. Markhininite, Tl+Bi(SO4)2. Mineralogical Magazine, 78, 16871698.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014b) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. II. Karpovite, Tl2VO(SO4)2(H2O). Mineralogical Magazine, 78, 16991709.CrossRefGoogle Scholar
Siidra, O.I., Vergasova, L.P., Kretser, Y.L., Polekhovsky, Y.S., Filatov, S.K. and Krivovichev, S.V. (2014c) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka peninsula, Russia. III. Evdokimovite, Tl4(VO)3 (SO4)5(H2O)5. Mineralogical Magazine, 78, 17111724.CrossRefGoogle Scholar
Thiele, G. and Grunwald, B. (1983) Über die Pentachlorothallate(III) K2TlCl5·2H2O und M2TlCl5·H2O (M = Rb, NH4). Zeitschrift für Anorganische und Allgemeine Chemie, 498, 105114.CrossRefGoogle Scholar
Thiele, G. and Rink, W. (1975) Die Kristallstruktur von Thalliumdichlorid, TlCl 2. Zeitschrift für Anorganische und Allgemeine Chemie, 414, 231235.CrossRefGoogle Scholar
Ungelenk, J. (1962) Zur Polymorphie der Thalliumhalogenide in Aufdampfschichten. Naturwissenschaften, 49, 252253.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Yu.S. and Pushcharovsky, D.Yu. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749757.CrossRefGoogle Scholar