Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T18:42:06.136Z Has data issue: false hasContentIssue false

Chromian-manganoan augite in the interchondrule matrix of the Tieschitz (H3) chondritic meteorite

Published online by Cambridge University Press:  05 July 2018

R. Hutchison*
Affiliation:
Mineralogy Department, British Museum (Natural History), London SW7 5BD

Abstract

The Tieschitz chondrite is a disequilibrium assemblage of silicate, metal and sulphide occurring together or separately as chondrules and clasts that generally have opaque rims (matrix) of fine-grained material. Translucent, silicate-rich matrix fills channels that occur sporadically between chondrules and clasts. An angular fragment of twinned ‘clinoenstatite’ was found to be rimmed with chromium- and manganese-rich augite and surrounded by opaque matrix. The whole is set within the largest area of translucent (white) interchondrule matrix encountered. It is suggested that reaction between crystallizing undersaturated translucent matrix, opaque matrix, and clinoenstatite probably led to the partial replacement of clinoenstatite by chromian-manganoan augite at high temperature.

Type
Meteorite Studies
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C.M. O., Barber, D.J., and Hutchison, R. (1984) Meteoritics, 19, 184-5Google Scholar
Ashworth, J.R. (1981) Proc. R. Soc. Lond., A374, 179-94Google Scholar
Ashworth, J.R. Mallinson, L.G., Hutchison, R., and Biggar, G.M. (1984) Nature, 308, 259-61 CrossRefGoogle Scholar
Bevan, A.W. R., and Axon, H.J. (1980) Earth Planet. Sci. Lett., 47, 353-60CrossRefGoogle Scholar
Biggar, G.M. (1985) Mineral Mag, 49, 49-58CrossRefGoogle Scholar
Christophe-Michel-Levy, M. (1976) Earth Planet. Sci. Lett., 30, 143-50CrossRefGoogle Scholar
Dodd, R.T. (1981) Meteorites. Cambridge University Press, pp. 368.Google Scholar
Gooding, J.L. and Keil, K. (1981) Lunar and Planet. Sci., Houston, XII, 353-5.Google Scholar
Grady, M.M., Barber, D.J., Graham, A.L., Kurat, G., Ntarfos, T., Palme, H., and Yanai, K. (1986) Pap. presented, llth Symp. Antarctic Meteorites, Tokyo, Nat. Inst. Polar Res. 134-6.Google Scholar
Huss, G.R., Keil, K., and Taylor, G.J. (1981) Geochim. Cosmochim. Acta, 45, 33-56CrossRefGoogle Scholar
Hutchison, R. and Bevan, A.W. R. (1983) In Chondrules and their origins (E. A. King, ed.). Houston, Lunar Planetary Inst. 162-79.Google Scholar
Hutchison, R. and Bevan, A.W. R. Agrell, S.O., and Ashworth, J.R. (1979) Nature,, 280, 116-19 CrossRefGoogle Scholar
Hutchison, R. and Bevan, A.W. R. Agrell, S.O., and Ashworth, J.R. (1980) Ibid. 287, 787-90.Google Scholar
Keil, K. (1968) J. Geophys. Res., 73, 694576Google Scholar
Lindsley, D.H., and Andersen, D.J. (1983) Ibid. Suppl. 88, A887-906.Google Scholar
Morgan, J.W., Janssens, M.-J., Takahashi, H., Hertogen, J., and Anders, E. (1985) Geochim. Cosmochim. Acta, 49, 247-59Google Scholar
Nagahara, H. (1984) Ibid. 48, 2581-95.Google Scholar
Rubin, A.E. (1984) Am. Mineral., 69, 880-8Google Scholar
Wlotzka, F. (1983) In Chondrules and their origins (E. A. King, ed.). Houston, Lunar Planetary Inst. 296-318.Google Scholar