Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:43:51.944Z Has data issue: false hasContentIssue false

Chromian illite-ankerite-quartz parageneses from the Kintail district of southern Ross-shire, Scotland

Published online by Cambridge University Press:  05 July 2018

T. N. Clifford
Affiliation:
Department of Geology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
D. C. Rex
Affiliation:
Department of Earth Sciences, University of Leeds, UK
R. Green
Affiliation:
Department of Earth Sciences, University of Leeds, UK
A. P. le Roex
Affiliation:
Department of Geological Sciences, University of Cape Town, South Africa
H. S. Pienaar
Affiliation:
Department of Geology, University of Stellenbosch, South Africa
D. Bühmann
Affiliation:
Council for Geosciences, Pretoria, South Africa

Abstract

The Coire Dhuinnid fault zone contains emerald green chromian illite-ankerite-quartz rocks that are similar in appearance to the fuchsite(or mariposite)-carbonate-quartz parageneses that are commonplace in Archaean greenstone belts but which are rather rare in Phanerozoic rocks. The chromian illite contains 2.3 wt.% Cr2O3, low K2O (7.1–7.6 wt.%) and high H2O+ (5.7 wt.%), and it is a 1M polytype with ≤10% of an illite/smectite interstratification indicative of a formation temperature of c. 175–200°C. The host rocks contain high concentrations of Ni and Cr, and show low concentrations of Ti, Nb, Y and Zr, suggesting a former primitive mafic protolith (boninitic magma?); they are considered to be retrograde remnants of Lewisian rocks. The latter, and the associated rocks of the Moine Series, have been affected by CO2 metasomatism that was accompanied by the addition of Ca(+Sr), Fe and Mg, and by the removal of Na from, and the addition of H2O to the Moine metasediments. Radiogenic isotope studies of mineral separates and whole rock from sample no. 43 yielded ages of 483±2 Ma (Ar-Ar dating on Cr illite), 413±12 Ma (K-Ar dating on Cr illite), and 322±9 Ma (Rb-Sr dating on minerals and whole rock); the significance of this discrepant pattern is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barr, D., Holdsworth, R.E. and Roberts, A.M. (1986) Caledonian ductile thrusting in a Precambrian metamorphic complex: the Moine of northwestern Scotland. Bull. Geol. Soc. Amer., 97, 754–64.2.0.CO;2>CrossRefGoogle Scholar
Birch, G.F. (1981) The Karbonat-bombe: a precise, rapid and cheap instrument for determining calcium carbonate in sediments and rocks. Trans. Geol. Soc. S. Africa, 84, 199203.Google Scholar
Böhlke, J.K. and Kistler, R.W. (1986) Rb-Sr, K-Ar, and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California. Econ. Geol., 81, 296322.CrossRefGoogle Scholar
Brown, G. and Norrish, K. (1952) Hydrous micas. Mineral. Mag., 29, 929–32.Google Scholar
Bucher, K. and Frey, M. (1994) Petrogenesis of Metamorphic Rocks, 6th edition. Springer-Verlag, Berlin, 318 pp.Google Scholar
Chao, F., Farrow, C.M. and Leake, B.E. (1986) Polydymite and chrome-rich fuchsite in virginite from Baie Verte, Newfoundland. Mineral. Mag., 50, 723–4.CrossRefGoogle Scholar
Cliff, R.A., Droop, G.T.R. and Rex, D.C. (1985) Alpine metamorphism in the southeast Tauern Window, Austria: 2. rates of heating, cooling and uplif. J. Metam. Geol., 3, 403–15.CrossRefGoogle Scholar
Clifford, T.N. (1957 a) The stratigraphy and structure of part of the Kintail district of southern Ross-shire: its relation to the Northern Highlands. Q. J. Geol. Soc. London, 113, 5792.CrossRefGoogle Scholar
Clifford, T.N. (1957 b) Fuchsite from a Silurian (?) quartz conglomerate, Acworth Township, New Hampshire. Amer. Mineral., 42, 566–8.Google Scholar
Clifford, T.N. (1959) A preliminary note on chromian mica in an ankerite-quartz-pyrite rock from southern Ross-shire, Scotland. Mineral. Mag., 32, 178–80.Google Scholar
Clifford, T.N. (1961) A note on kyanite in the Moine Series of southern Ross-shire, and a review of related rocks in the Northern Highlands of Scotland. Geol. Mag., 95, 333–46.CrossRefGoogle Scholar
Colvine, A.C., Andrews, A.J., Cherry, M.E., Durocher, M.E., Fyon, A.J., Lavigne Jr., M.J., Macdonald, A.J., Marmont, Soussan, Poulsen, K.H., Springer, J.S. and Troop, D.G. (1984) An integrated model for the origin of Archean lode gold deposits. Ontario Geol. Surv. Open File Rept. 5524.Google Scholar
Cooke, H.C. (1922) Kenogami, Round, and Larder Lake areas, Timiskaming district, Ontario. Mem. Geol. Surv. Canada, 131.CrossRefGoogle Scholar
Crawford, A.J., Falloon, T.J. and Green, D.H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites and Related Rocks (Crawford, A.J., ed.). Unwin and Hyman, London, 149.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1962) Illite. In Rock-forming Minerals, vol. 3 (sheet silicates). Longmans, London, 213–25.Google Scholar
Dewey, J.F. and Pankhurst, R.J. (1970) The evolution of the Scottish Caledonides in relation to their isotopic age pattern. Trans. R. Soc. Edinb., 68, 361–89.CrossRefGoogle Scholar
Dong, H., Hall, C.M., Peacor, D.R. and Halliday, A.N. (1995) Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating. Science, 267, 355–9.CrossRefGoogle Scholar
Downes, M.J. (1981) Structural and stratigraphic aspects of gold mineralization in the Larder Lake area, Ontario. In Genesis of Archean, Volcanic Hosted Gold Deposits (Pye, E.G. and Roberts, R.G., eds.). Ontario Geol. Surv. Miscell. Paper, 97, 66–70.Google Scholar
Feather, C.E. and Willis, J.P. (1976) A simple method of background and matrix correction of spectral peaks in trace element determination by X-ray fluorescence spectrometry. X-Ray Spectrometry, 5, 41–8.CrossRefGoogle Scholar
Feldtmann, F.R. (1916) The geology and ore deposits of Kalgoorlie, East Coolgardie Goldfield. Part III. Bull. Geol. Surv. W. Australia, 69.Google Scholar
Ferguson, H.G. and Gannett, R.W. (1932) Gold quartz veins of the Alleghany District, California. U. S. Geol. Surv. Prof. Paper, 172.CrossRefGoogle Scholar
Fettes, D.J., Long, C.B., Bevin, R.E., Max, M.D., Oliver, G.J.H., Primmer, T.J., Thomas, L.J. and Yardley, B.W.D. (1985) Grade and time of metamorphism in the Caledonide Orogen of Britain and Ireland. In The Nature and Timing of Orogenic Activity in the Caledonian Rocks of the British Isles (Harris, A.L., ed.). Mem. Geol. Soc. London, 9, 41–53.Google Scholar
Fleuty, M.J. (1974) The Beinn Bhreac fold, southern Ross-shire. Scottish J. Geol., 10, 229–35.CrossRefGoogle Scholar
Frankel, J.J. (1939) The green colour of the Hospital Hill quartzites. Trans. Geol. Soc. S. Africa, 42, 1517.Google Scholar
Harris, A.L. and Johnson, M.R.W. (1991) Moine. In Geology of Scotland, 3rd edition (Craig, G.Y., ed.). Geol. Soc. London, 87–123.Google Scholar
Holdsworth, R.E., Strachan, R.A. and Harris, A.L. (1994) Precambrian rocks in northern Scotland east of the Moine Thrust: the Moine Supergroup. In A revised correlation of Precambrian rocks in the British Isles (Gibbons, W. and Harris, A.L., eds.). Spec. Rept. Geol. Soc. London, 22, 2332.CrossRefGoogle Scholar
Holmsen, P., Padget, P. and Pehkonen, E. (1957) The Precambrian geology of Vest-Finnmark, northern Norway. Norges Geol. Undersök., No. 201.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. and Schwander, H. (1986) The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib. Mineral. Petrol., 92, 157–80.CrossRefGoogle Scholar
Hutton, C.O. (1942) Fuchsite-bearing schists from Dead Horse Creek, Lake Wakatipu region, western Otago. Trans. R. Soc. New Zealand, 72, 5368.Google Scholar
Hutton, D.H.W. and McErlean, M. (1991) Silurian and Early Devonian sinistral deformation of the Ratagain granite, Scotland: constraints on the age of Caledonian movements on the Great Glen fault system. J. Geol. Soc. London, 148, 14.CrossRefGoogle Scholar
Jennings, S. and Thompson, G.R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California. J. Sedim. Petrol., 56, 89–98.Google Scholar
Kashkai, M.A. (1965) Metasomatic zoning and chem-istry of listwanites. Chem. Abstr., 63 no. 8048d–e.Google Scholar
Kelley, S. (1988) The relationship between K-Ar mineral ages, mica grainsizes and movement on the Moine Thrust Zone, NW Highlands, Scotland. J. Geol. Soc. London, 145, 110.CrossRefGoogle Scholar
Kennedy, W.Q. (1949) Zones of progressive regional metamorphism in the Moine Schists of the western Highlands of Scotland. Geol. Mag., 86, 4356.CrossRefGoogle Scholar
Kisch, H.J. (1990) Calibration of the anchizone: a critical comparison of illite ‘crystallinity’ scales used for definition. J. Metam. Geol., 8, 3146.CrossRefGoogle Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. J. Metam. Geol., 9, 665–70.CrossRefGoogle Scholar
Knopf, A. (1929) The Mother Lode System of California. U. S. Geol. Surv. Prof. Paper, 157.CrossRefGoogle Scholar
Leo, G.W., Rose, H.J. and Warr, J.J. (1965) Chromian muscovite from the Serra de Jacobina, Bahia, Brazil. Amer. Mineral., 50, 392402.Google Scholar
Long, L.E. (1964) Rb-Sr chronology of the Carn Chuinneag intrusion, Ross-shire, Scotland. J. Geophys. Res., 69, 1589–97.CrossRefGoogle Scholar
Martyn, J.E. and Johnson, G.I. (1986) Geological setting and origin of fuchsite-bearing rocks near Menzies, Western Australia. Australian J. Earth Sci., 33, 373–90.CrossRefGoogle Scholar
May, F., Peacock, J.D., Smith, D.I. and Barber, A.J. (1993) Geology of the Kintail district. Mem. British Geol. Surv., 75 pp.Google Scholar
McDougall, I . and Harrison, T.M. (1988) Geochronology and Thermochronology by the 40Ar/39Ar Method. Clarendon Press, Oxford.Google Scholar
Merriman, R.J., Roberts, B. and Peacor, D.R. (1990) A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK. Contrib. Mineral. Petrol., 106, 27–40.CrossRefGoogle Scholar
Newman, A.C.D. and Brown, G. (1986) The chemical constitution of clays. In Chemistry of Clays and Clay Minerals (Newman, A.C.D., ed.). Monogr. Mineral. Soc., 6, 1128.Google Scholar
Norrish, K. and Hutton, J.T. (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta, 33, 431–53.CrossRefGoogle Scholar
Peach, B.N., Horne, J.T., Woodward, H.B., Clough, C.T., Harker, A. and Wedd, C.B. (1910) The geology of Glenelg, Lochalsh, and south-east part of Skye. Mem. Geol. Surv. Scotland.Google Scholar
Pearton, T.N. and Viljoen, M.J. (1986) Antimony mineralization in the Murchison greenstone belt — an overview. In Mineral Deposits of Southern Africa, vol. I (Anhaeusser, C.R. and Maske, S., eds.). Geol. Soc. South Africa, 293320.Google Scholar
Pidgeon, R.T. and Johnson, M.R.W. (1974) A compar-ison of zircon U-Pb and whole-rock Rb-Sr systems in three phases of the Carn Chuinneag granite, northern Scotland. Earth Planet. Sci. Lett., 24, 105–12.CrossRefGoogle Scholar
Reuter, A. and Dallmeyer, R.D. (1989) K-Ar and 40Ar/39Ar dating of cleavage formed during very low-grade metamorphism: a review. In Evolution of Metamorphic Belts (Daly, J.S. Cliff, R.A. and Yardley, B.W.D., eds.). Spec. Publ. Geol. Soc. London, 43, 161–71.Google Scholar
Rex, D.C. (1994) K-Ar age determinations of samples from Leg 134. Proc. Ocean Drill. Prog. Sci. Results, 134, 413–4.Google Scholar
Rex, D.C., Guise, P.G. and Wartho, J.-A. (1993) Disturbed 40Ar-39Ar spectra from hornblendes: thermal loss or contamination? Chem. Geol. (Isot. Geosci. Sect.), 103, 271–81.Google Scholar
Roberts, A.M., Smith, D.I. and Harris, A.L. (1984) The structural setting and tectonic significance of the Glen Dessary syenite. J. Geol. Soc. London, 141, 1033–42.CrossRefGoogle Scholar
Roddick, J.C. (1983) High precision intercalibration of 40Ar-39Ar standards. Geochim. Cosmochim. Acta, 47, 887–98.CrossRefGoogle Scholar
Rogers, G. and Dunning, G.R. (1991) Geochronology of appinitic and related granitic magmatism in the W Highlands of Scotland: constraints on the timing of transcurrent fault movement. J. Geol. Soc. London, 148, 1727.CrossRefGoogle Scholar
Rogers, G. and Pankhurst, R.J. (1993) Unravelling dates through the ages: geochronology of the Scottish metamorphic complexes. J. Geol. Soc. London, 150, 447–64.CrossRefGoogle Scholar
Schreyer, W., Werding, G. and Abraham, K. (1981) Corundum-fuchsite rocks in greenstone belts of southern Africa; petrology, geochemistry, and possible origin. J. Petrol., 22, 191231.CrossRefGoogle Scholar
Simpson, E.S. and Gibson, C.G. (1912) The geology and ore deposits of Kalgoorlie, East Coolgardie Goldfield. Part I. Bull. Geol. Surv. W. Australia, 42.Google Scholar
Środoń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays Clay Minerals, 32, 337349.CrossRefGoogle Scholar
Stangatchilovitch, D. (1956) Sur la présence d'illite chromifère dans le gisement de cinabre d'Avala, près de Belgrade. Compte Rendus Acad. Sci. Paris, 242, 145–7.Google Scholar
Steiger, R.H. and Jäger, E. (1977) Subcommission on geochronology: convention on the use decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–62.CrossRefGoogle Scholar
Stillwell, F.L. (1929) Geology and ore deposits of the Boulder Belt, Kalgoorlie. Bull. Geol. Surv. W. Australia, 94.Google Scholar
Sund, J.O., Schwabe, M.R., Hamlyn, D.A. and Bonsall, E.M. (1984) Gold mineralisation at the north end of the Kalgoorlie field, Mount Percy - Kalgoorlie, Western Australia. In Gold-mining, Metallurgy and Geology. Regional Conference of the Australasian Institute of Mining and Metallurgy, 397–404.Google Scholar
Tanner, P.W.G. (1971) The Sgurr Beag Slide — a major tectonic break within the Moinian of the Western Highlands of Scotland. Q. J. Geol. Soc. London, 126, 435–63.CrossRefGoogle Scholar
Thompson, A.B. (1970) A note on the kaolinite-pyrophyllite equilibrium. Amer. J. Sci.van, 268, 454–8.CrossRefGoogle Scholar
van Breemen, O., Pidgeon, R.T. and Johnson, M.R.W. (1974) Precambrian and Palaeozoic pegmatites in the Moines of northern Scotland. J. Geol. Soc. London, 130, 493–507.CrossRefGoogle Scholar
van Breemen, O., Aftalion, M., Pankhurst, R.J. and Richardson, S.W. (1979a) Age of the Glen Dessary syenite, Inverness-shire: diachronous Palaeozoic metamorphism across the Great Glen. Scottish J. Geol., 15, 49–62.CrossRefGoogle Scholar
van Breemen, O., Aftalion, M. and Johnson, M.R.W. (1979b) Age of the Loch Borrolan complex, Assynt, and late movements along the Moine Thrust Zone. J. Geol. Soc. London, 136, 489–95.CrossRefGoogle Scholar
Walker, J.R. and Thompson, G.R. (1990) Structural variations in chlorite and illite in a diagenetic sequence from the Imperial Valley, California. Clays Clay Minerals, 38, 315–21.CrossRefGoogle Scholar
Warr, L.N. (1996) Standardized clay mineral crystal- linity data from the very low-grade metamorphic facies rocks of southern New Zealand. Eur. J. Mineral., 8, 115–127.CrossRefGoogle Scholar
Watson, J.V. (1984) The ending of the Caledonian orogeny in Scotland. J. Geol. Soc. London, 141, 193–214.CrossRefGoogle Scholar
Whitmore, D.R.E., Berry, L.G. and Hawley, J.E. (1946) Chrome micas. Amer. Mineral., 31, 1–21.Google Scholar
Yoder, H.S. and Eugster, H.P. (1955) Synthetic and natural muscovites. Geochim. Cosmochim. Acta, 8, 225–80.CrossRefGoogle Scholar