Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T17:45:40.091Z Has data issue: false hasContentIssue false

Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry

Published online by Cambridge University Press:  05 July 2018

Shoji Arai*
Affiliation:
Department of Earth Sciences, Faculty of Science, Kanazawa University, Kanazawa 920, Japan

Abstract

Chromian spinel in volcanic rocks is a potential discriminant for magma chemistry. The TiO2 content of spinel, compared at similar Fe3+/(Cr + Al + Fe3+) ratios, can distinguish island arc basalts from intraplate basalts. MORB spinels are low in this ratio and are intermediate for the TiO2 level at comparable Fe3+ ratios. Spinels from back-arc basin basalts, although similar in TiO2/Fe3+ ratio, are more enriched in Fe3+ than the MORB spinels. Spinels in the oceanic plateau basalts are distinctly lower in TiO2 than other intraplate basalt spinels and even slightly lower in TiO2 than the MORB spinels. The data were successfully applied to estimate the kind of the magma from which spinelbearing cumulates, especially dunites, were formed. Original magma chemistry of altered or metamorphosed volcanics in which spinels survive can also be estimated by the chemistry of relict spinel alone. It is possible to estimate the magma type of source volcanics for detrital spinel particles of volcanic derivation.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, S. (1981) Petrology of basalts from Site 487, Deep Sea Drilling Project Leg 66, Middle America Trench area off Mexico. Initial Rep. D.S.D.P., 66, 711–22.Google Scholar
Arai, S. (1987) An estimation of the least depleted spinel peridotites on the basis of olivine-spinel mantle array. Neues Jahrb. Mineral., Mh., 347-57.Google Scholar
Arai, S. (1989) Upper mantle peridotites beneath the Japan island arcs. Kaiyo Monthly, 21, 4754.Google Scholar
Arai, S. (1990a) What kind of magmas could be equilib rated with ophiotitic peridotites? In Ophiofites, Oceanic Crustal Analogues (Malpas, J. et al., eds.). Geol. Surv. Dept., Minist. Agric. Nat. Res., 557-65.Google Scholar
Arai, S. (1990b) Chemical compositions of chromian spinel and olivine in some alkaline rocks from Japan. Sci. Rep. Kanazawa Univ., 35, 2538.Google Scholar
Arai, S. (1991) The Circum-Izu Massif peridotite, central Japan, as back-arc mantle fragments of the Izu-Bonin arc system. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (Peters, Tj. et al., eds.). Kluwer Academic Press, Dordrecht, 807-22.Google Scholar
Arai, S. and Hisada, K. (1991) Detrital chromian spinels from the Ishido Formation of the Scanchu Cretaceous Formations, Kanto Mountains, central Japan. J. Mineral. Petrol. Econ. Geol. 86, 540–53.CrossRefGoogle Scholar
Arai, S. and Okada, H. (1991) Petrology of serpentine sandstone as a key to tectonic development of serpentine belts. Tectonophys., 195, 6581.CrossRefGoogle Scholar
Arai, S. and Takahashi, N. (1987) Petrographical notes on deep-seated and related rocks: (5) Compositional relationships between olivine and chromian spinel in some volcanic rocks from Iwate and Rishiri volcanos, NE Japanese Arc. Ann. Rep. Inst. Geosci. Univ. Tsukuba, 13, 110–14.Google Scholar
Basaltic Volcanism Study Project (1981) Basaltic Volca- nism on the Terrestrial Planets. Pergamon. New York. 1286 pp.Google Scholar
Bloomer, S. H. and Hawkins, J. W. (1987) Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contrib. Mineral. Petrol., 97, 361–77.CrossRefGoogle Scholar
Clague, D. A. (1976) Petrology of basaltic and gabbroic rocks dredged from the Danger Island Troughs, Manihiki Plateau. Initial Rep. D. S. D. P., 33, 891911.Google Scholar
Clague, D. A. (1988) Petrology of ultramafic xenoliths from Loihi Seamount, Hawaii. J. Petrol., 29, 1161–86.CrossRefGoogle Scholar
Fisk, M. R., and Bence, A. E. (1980) Mineral chemistry of basalts from Ojin, Nintoku, and Suiko seamounts, Leg 55 DSDP. Initial Rep. D.S.D.P., 55, 607–37.Google Scholar
Crawford, A. J. (1980) A clinoenstatite-bearing cumulate olivine pyroxenite from Howqua, Victoria. Contrib. Mineral. Petrol., 75, 353–67.CrossRefGoogle Scholar
Dick, H. J. B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Ibid., 86, 54-76.Google Scholar
Donaldson, C. H. and Brown, R. W. (1977) Refractory megacrysts and magnesium-rich melt inclusions within spinel in oceanic tholeiites: Indicators of magma mixing and parental magma composition. Earth Planet. Sci. Lett., 37, 81–9.CrossRefGoogle Scholar
Evans, B. W. and Frost, B. R. (1975) Chrome-spinel in progressive metamorphism- — a preliminary analysis. Geochim. Cosmochim. Acta, 39, 959–72.CrossRefGoogle Scholar
Evans, B. W. and Frost, B. R. and Wright, T. L. (1972) Composition of liquidus chromite from the 1959 (Kilauea Iki) and 1965 (Makaopuhi) eruptions of Kilauea volcano, Hawaii. Am. Mineral., 57, 217–30.Google Scholar
Fabries, J. (1979) Spinel-olivine geothermometry in peridotite from ultramafic complex. Contrib. Mineral. Petrol., 69, 329–36.CrossRefGoogle Scholar
Frey, F. A. and Prinz, M. (1978) Ultramafic inclusions from San Carlos, Arizona: Petrologic and geochemi-cal data bearing on their petrogenesis. Earth Planet. Sci. Lett., 38, 129–76.CrossRefGoogle Scholar
Frey, F. A. and Prinz, M. Bryan, W. B., and Thompson, G. (1974) Atlantic ocean floor: geochemistry and petrology of basalts from Legs 2 and 3 of the Deep Sea Drilling Project. J. Geophys. Res., 79, 5507–27.CrossRefGoogle Scholar
Glassley, W. (1974) Geochemistry and tectonics of the Crescent Volcanic Rocks, Olympic Peninsula, Washington. Geol. Soc. Am. Bull., 85, 785–94.2.0.CO;2>CrossRefGoogle Scholar
Graham, I. J. and Hackett, W. R. (1987) Petrology of calc-alkaline lavas from Ruapehu volcano and related vents, Taupo Volcanic Zone. New Zealand. J. Petrol., 28, 531-57.CrossRefGoogle Scholar
Gunn, B. M., Coy-Yll, R., Watkins, N. D., Abranson, C. E. and Nougier, J. (1970) Geochemistry of an oceanite-ankaramite-basalt suite from East Island, Crozet Archipelago. Contrib. Mineral. Petrol., 28, 319–39.CrossRefGoogle Scholar
Hattori, T. (1986) Origin of Alkali Basalt in Takaku-sayama District, Shizuoka Prefecture, Japan. Unpubl. Thesis, Univ. Tsukuba, 44 pp.Google Scholar
Hawkins, J. W. and Melchior, J. T. (1983) Petrology of basalts from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett., 66, 356–68.CrossRefGoogle Scholar
Hawkins, J. W. and Melchior, J. T. (1985) Petrology of Mariana Trough and Lau Basin basalts. J. Geophys. Res., 90, 11431–68.CrossRefGoogle Scholar
Hisada, K., Arai, S., and Ishida, T. (1991) Detrital chromian spinel as a key to origin and history of the Sanchu sedimentary basin, central Japan. (in preparation).Google Scholar
Irvine, T. N. (1965) Chromian spinel as a petrogenetic indicator; Part I, Theory. Canada. J. Earth Sci., 2, 648–71.CrossRefGoogle Scholar
Irvine, T. N. (1967) Chromian spinel as a petrogenetic indi cator; Part II, Petrologic applications. Ibid., 4, 71-103.Google Scholar
Ishibashi, K. (1971) Petrochemical study of basic and ultrabasic rocks from Northern Kyushu, Japan. Mere. Fac. Sci. Kyushu Univ., Ser. D, 20, 85146.Google Scholar
Ishida, T., Arai, S., and Takahashi, N. (1988) The occurrence of pictrite basalt in the Kobotoke Group, the Hatsukari area, Yamanashi Prefecture, central Japan. J. Mineral. Petrol. Econ. Geol., 83, 4350.CrossRefGoogle Scholar
Ishida, T., Arai, S., and Takahashi, N. (1990) Metamorphosed picrite basalts in the northern part of the Setogawa belt, central Japan. J. Geol. Soc. Japan, 96, 181–91.CrossRefGoogle Scholar
Ishizuka, H., Kawanobe, Y., and Sakai, H. (1990) Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochem, J., 24, 7592.CrossRefGoogle Scholar
Jackson, E. D. (1969) Chemical variation in co-existing chromite and olivine in chromite zones of the Still water complex. In Magrnatic Ore Deposits (Wilson, H. D. B., ed.). Econ. Geol. Monogr.,6, 41-71.Google Scholar
Johnson, R. W., Jaques, A. L., Hickey, R. L., McKee, C. O., and Chappell, B. W. (1985) Manam Island, Papua New Guinea: Petrology and geochemistry of a low-Ti basaltic island-arc volcano. J. Petrol., 26, 283323.CrossRefGoogle Scholar
Kanehira, K. (1976) Modes of occurrence of serpenti-nite and basalt in the Mineoka district, southern Boso Peninsula. Mem. Gol. Soc. Japan, 13, 4350.Google Scholar
Katsui, Y., Oba, Y., Ando, S., Nishimura, S., Masuda, Y., Kurasawa, H., and Fujimaki, H. (1978) Petrochemistry of the Quaternary volcanic rocks of Hokkaido, north Japan. J. Fac. Sci. Hokkaido Univ., Set. IV, 18, 449–84.Google Scholar
Kobayashi, T. (1987) Geology of Rishiri Volcano. J. Geol. Soc. Japan, 93, 749–60.CrossRefGoogle Scholar
Kobayashi, Y. and Arai, S. (978) Ultramafic nodules in alkali basalt from Taka-shima, Saga Prefecture, Japan. Geosci. Rept. Shizuoka Univ., 6, 1124.Google Scholar
Krishnamurthy, P. and Cox, K. G. (1977) Picrite basalts and related lavas from the Deccan Traps of Western India. Contrib. Mineral. Petrol, 62, 5375.CrossRefGoogle Scholar
Kuroda, N., Shiraki, K., and Urano, H. (1978) Boninite as a possible calc-alkaline primary magma. Bull. Volcanol., 41, 4, 563-75.CrossRefGoogle Scholar
Mattey, D. P., Marsh, N. G., and Tarney, J. (1981) The geochemistry, mineralogy, and petrology of basalts from the West Philippine and Parece Vela basins and from the Palau-Kyushu and West Mariana ridges. Deep Sea Drilling Project Leg 59. Initial Rep. D.S.D.P., 59, 753–97.Google Scholar
Mattioli, G. S. and Wood, B. J. (1986) Upper mantle oxygen fugacity recorded by spinel Iherzolites. Nature, 322, 626–7.CrossRefGoogle Scholar
Otofuji, Y., Hayashida, A., and Torii, M. (1985) When was the Japan Sea opened?: paleomagnetic evidence from southwest Japan. In Formation of Active Ocean Margins (Nasu, N. etal., eds.). Terra Sci. Pub., Tokyo,551-16.CrossRefGoogle Scholar
Ozawa, K. (1985) Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe exchange. Geochim. Cosmochim. Acta, 48, 2597-11.CrossRefGoogle Scholar
Ozawa, K. (1989) Stress-induced A1-Cr zoning of spinel in deformed peridotites. Nature, 338, 141–4.CrossRefGoogle Scholar
Ramsay, W. R. H., Crawford, A. J., and Foden, J. D. (1984) Field setting, mineralogy, chemistry and genesis of arc picrites, New Georgia, Solomon Islands. Contrib. Mineral. Petrol., 88, 386402.CrossRefGoogle Scholar
Ridley, W. I., Rhodes, J. M., Reid, A. M., Jakes, J., Shih, C., and Bass, M. N. (1974) Basalts from Leg 6 of the Deep-Sea Drilling Project. J. Petrol., 15, 140–59.CrossRefGoogle Scholar
Rimsaite, J. (1971) Distribution of major and minor constituents between mica and host ultrabasic rocks, and between zoned mica and zoned spinel. Contrib. Mineral. Petrol., 33, 259272.CrossRefGoogle Scholar
Sakuyama, M. (1978) Evidence of magma mixing: petrological study of Shiroumaoike calc-alkaline andesite volcano, Japan. J. Volcanol. Geotherm. Res., 5, 179208.CrossRefGoogle Scholar
Sameshima, T. (1960) Picrite basalt dykes in the Paleogene formation in central Japan. Rept. Liberal Art Sci. Fac. Shizuoka Univ., Sec. Nat. Sci., 3, 7780.Google Scholar
Sato, H. and Tohara, T. (1985) Geochemical characteristics of back-arc basin basalt. In Formation of Active Ocean Margins (Nasu, N. et al., eds.). Terra Sci. Pub., Tokyo, 399-410.CrossRefGoogle Scholar
Saunders, A. D. and Tarney, J. (1979) The geo-chemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochim. Cosmochim. Acta, 43, 555–72.CrossRefGoogle Scholar
Scowen, P. A. H., Roeder, P. L., and Helz, R. T. (1991) Reequilibration of chromite within Kilauea lki lava lake, Hawaii. Contrib. Mineral, Petrol., 107, 820.CrossRefGoogle Scholar
Sen, G. and Presnall, D. C. (1986) Petrogenesis of dunite xenoliths from Koolau shield, Oahu, Hawaii: Implications for Hawaiian volcanism. J. Petrol., 27, 197217.CrossRefGoogle Scholar
Shcheka, S. (1981) Igneous rocks of Deep Sea Drilling Project Leg 61, Nauru Basin. Initial Rep. D.S.D.P., 61, 633–46.Google Scholar
Shinmura, T. (1990). Strontium Isotopic Ratios of Tertiary Volcanic Rocks from Northern Part of Central Japan. Unpub. Thesis, Univ. Tsukuba, 39 pp.Google Scholar
Shiraki, K. and Kuroda, N. (1977) The boninite revisited. J. Geogr. (Tokyo), 86, 174–90.CrossRefGoogle Scholar
Shuto, K., Yashima, R. and Takimoto, T. (1985) Primitive olivine tholeiite from the Ryozen district, northeastern part of Fukushima Prefecture, northeast Japan. J. Petrol. Mineral. Econ. Geol., 80, 5572.CrossRefGoogle Scholar
Sigurdsson, H. and Schilling, J.-G. (1976) Spinels in Mid-Atlantic Ridge basalts; chemistry and occur-rence. Earth Planet. Sci. Lett., 29, 720.CrossRefGoogle Scholar
Stoeser, D. B. (1975) Igneous rocks from Leg 30 of the Deep Sea Drilling Project. Initial Rep. D.S.D.P., 30, 401–14.Google Scholar
Taira, A., Tokuyama, H., and Sob, W. (1989) Accre-tion tectonics and evolution of Japan. In The Evolution of the Pacific Ocean Margins (Ben-Avraham, Z., ed.). Oxford Univ. Press, Oxford, 100-23.Google Scholar
Tatsumi, Y. and lshizaka, K. (1981) Existence of andesite primary magma: an example from southwest Japan. Earth Planet. Sci. Lett., 53, 124–30.CrossRefGoogle Scholar
Thy, P. (1983) Spinel minerals in transitional and alkali basaltic glasses from Iceland. Contrib. Mineral. Petrol., 83, 141–9.CrossRefGoogle Scholar
Tokuyama, H. and Batiza, R. (1981) Chemcial compo-sition of igneous rocks and origin of the sill and pillow-basalt complex of Nauru Basin, southwest Pacific. Initial Rep. D.S.D.P., 61, 673–87.Google Scholar
Tracy, R. I. (1980) Petrology and genetic signifcance of an ultramafic xenolith suite from Tahiti. Earth Planet. Sci. Lett., 48, 8096.CrossRefGoogle Scholar
Umino, S. (1986) Magma mixing in the boninite sequence of Chichijima, Bonin Islands. J. Volcanol. Geotherm. Res., 29, 125-57.CrossRefGoogle Scholar
Upton, B. G., Emeleus, C. H., and Beckinsale, R. D. (1984) Petrology of the northern East Greenland Tertiary flood basalts: Evidence from Hold with Hope and Wollaston Forland. J. Petrol., 25, 151-84.CrossRefGoogle Scholar
Walker, D. A. and Cameron, W. E. (1983) Boninite primary magmas: evidence from the Cape Vogel Peninsula, PNG. Contrib. Mineral. Petrol., 83, 150–8.CrossRefGoogle Scholar
Wilkinson, J. F. G. and Hensel, H. D. (1988) The petrology of some pierites from Mauna Loa and Kilauea volcanoes, Hawaii. Ibid., 98, 326-45.Google Scholar
Wilson, M. (1989) Igneous Petrogenesis., Unwin Hyman, London, 466 pp.CrossRefGoogle Scholar
Wood, B. J. and Virgo, D. (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta, 53, 1277–91.CrossRefGoogle Scholar
Yamakawa, M. and Chihara, K. (1968) Petrology of Ogi Basalt. Part l. Petrochemistry. J. Fac. Sci., Niigata Univ., Ser. E., 2, 4179.Google Scholar
Yamamoto, M. (1983) Spinels in basaltic lavas and ultramafic inclusions of Oshima Oshima volcano, north Japan. J. Fac. Sci. Hokkaido Univ., Ser. IV, 20, 135–43.Google Scholar