Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:25:38.984Z Has data issue: false hasContentIssue false

Chemical effects of deuteric alteration in some Kenyan trachyte lavas

Published online by Cambridge University Press:  05 July 2018

W. B. Jones*
Affiliation:
Esso Exploration (Europe-Africa) Inc., St. Clements House, Church Street, Walton-on-Thames, Surrey, KT12 2QL

Abstract

The Kenyan trachyte volcanoes Kilombe and Londiani show some unusual chemical features. Analyses of elements normally regarded as residual in salic peralkaline rocks do not show the linear covariance characteristic of these elements in other East African volcanoes. The scatter from expected trends is greatest for Y and the lanthanides, less for Nb and Rb, and not apparent for Zr. The lavas also show variable loss of Na, P, and Fe. It is suggested that this chemical deviation is the result of a deuteric event during the later stages of crystallization of the lavas. The flows showing the chemical deviations, in particular negative Ce anomalies, also tend to have their ferroaugite phenocrysts deuterically altered to a mineraloid closely resembling iddingsite.

During the crystallization of these trachyte lavas an H2O-, Cl-, and F-rich vapour separates from the liquid. This absorbs some elements, particularly Na, P, Fe, Y, and the lanthanides from the silicate liquid as water-soluble or volatile halides. Some of the absorbed material is redeposited in other parts of the flow and the rest is lost altogether as the vapour escapes from the surface.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D. K. and Macdonald, R. (1975). Fluorine and chlorine in peralkaline liquids and the need for magma generation in an open system. Mineral. Mag. 40, 405-14.CrossRefGoogle Scholar
Baker, B. H. (1978). A note on the behaviour of incompatible trace elements in alkaline magmas. Neumann, E. R. and Ramberg, I. B. (eds.), Petrology and Geochemistry of Continental Rifts, 15-25.Google Scholar
Baker, B. H. and Henage, L. F. (1977). Compositional changes during crystallisation of some peralkaline silicic lavas of the Kenya Rift Valley. J. Volcan. Geotherm. Res. 2, 1728.Google Scholar
Barberl, F., Ferrara, G., Santacroce, R., Treuil, M., and Varet, J. (1975). A transitional basalt-pantellerite sequence of fractional crystallisation, the Boina Centre (Afar Rift, Ethiopia). J. Petrol. 16, 22-56.CrossRefGoogle Scholar
Gay, P. and LeMaitre, R. W. (1961). Some observations on iddingsite. Am. Mineral. 46, 92-111.Google Scholar
Gibson, I. L. (1972). The chemistry and petrogenesis of a suite of pantellerites from the Ethiopian Rift. J. Petrol. 13, 31-44.Google Scholar
Herman, A. G. (1970). In Wedepohl, K. H. (ed.). Handbook of geochemistry. Springer, Berlin-Heidelberg. New York. 2, part 2, sect. 39. F2.Google Scholar
Heslop, R. B. and Robinson, P. L. (1967). Inorganic chemistry, 3rd edn., Elsevier, Amsterdam London-New York. p. 613.Google Scholar
Jennings, D. J. (1971). Geology of the Molo area. Rep. Geol. Surv. Kenya, 86.Google Scholar
Jones, W. B. (1975). The geology of the Londiani area of the Kenya Rift Valley, Unpub. Ph.D. thesis, Univ. of London.Google Scholar
Jones, W. B. (1979a). Mixed benmoreite/trachyte flows from Kenya and their bearing on the Daly Gap. Geol. Mag. 116, 487-9.CrossRefGoogle Scholar
Jones, W. B. (1979b). Syenite boulders associated with two Kenyan trachyte volcanoes. Lithos, 12, 89-97.CrossRefGoogle Scholar
Johnson, R. W. (1969). Volcanic globule rock from Mount Suswa, Kenya. Bull. Geol. Soc. Am. 79, 647-52.CrossRefGoogle Scholar
McCall, G. J. H. (1964). Kilombe caldera, Kenya. Proc. Geol. Assoc. 75, 565-72.CrossRefGoogle Scholar
McCall, G. J. H. (1967). Geology of the Nakuru-Thomson's Falls- Lake Hannington area. Rep. Geol. Surv. Kenya, 78.Google Scholar
McCall, G. J. H. and Hornung, G. (1972). A geochemical study of Silali volcano, Kenya, with special reference to the origin of the intermediate acid eruptives of the Central Rift Valley. In Girdler, R. W. (ed.) East African Rifts. Tectonophysics, 15, 97-113.CrossRefGoogle Scholar
Macdonald, R. and Bailey, D. K. (1973). The Chemistry of the peralkaline oversaturated obsidians. U.S. Geol. Surv. Prof. Paper 440 N.I.Google Scholar
Noble, D. C. (1965). Gold Flat Member of the Thirsty Canyon Tuff – a pantellerite ash-flow sheet in southern Nevada. U.S. Geol. Surv. Prof. Pap. 525B, 85-90.Google Scholar
Noble, D. C. (1970). Loss of sodium from crystallized comendite welded tufts of the Miocene Grouse Canyon Member of the Belted Range Tuff, Nevada. Geol. Soc. Am. Bull. 81, 2677-87.CrossRefGoogle Scholar
Noble, D. C. , Smith, V. C., and Peck, L. C. (1967). Loss of halogens from crystallized and glassy silicic volcanic rocks. Geochim Cosmochim. Acta, 31, 215-23.CrossRefGoogle Scholar
Pearce, J. A. (1975). Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophys. 25, 41-67.CrossRefGoogle Scholar
Price, W. F. and Bailey, D. K. (1980). A carbon dioxiderich volatile phase in Mount Etna volcanism. Mineral. Mag. 43, 675-7.CrossRefGoogle Scholar
Romano, R. (1969). Sur l'origine de l'exces de sodium dans certaines lavas de l'Ille de Pantelleria. Bull. Volcanol. 33, 17.CrossRefGoogle Scholar
Sceal, J. M. C. and Weaver, S. D. (1971). Trace-element data bearing on the origin of salic rocks from the Quaternary volcano Paka, Gregory Rift, Kenya. Earth Planet Sci. Lett. 12, 327-31.CrossRefGoogle Scholar
Weaver, S. D., 1973. The geology of the Nasaken area of the Rift Valley, South Turkana, Kenya. Unpub. Ph.D. thesis, Univ. of London.Google Scholar
Weaver, S. D., Sceal, J. S. C., and Gibson, I. L. (1972). Trace element data relevant to the origin of trachytic and pantelleritic lavas in the East African Rift System. Contrib. Mineral. Petrol. 36, 181-94.CrossRefGoogle Scholar
Wilshire, H. G., 1958. Alteration of olivine and orthopyroxene in basic lavas and shallow intrusions. Amer. Mineral. 43, 120-47.Google Scholar