Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T05:01:18.822Z Has data issue: false hasContentIssue false

Characterization of conichalcite by SEM, FTIR, Raman and electronic reflectance spectroscopy

Published online by Cambridge University Press:  05 July 2018

B. J. Reddy
Affiliation:
Inorganic Materials Research Program, Queensland University of Technology, 2 George Street, Brisbane, GPO Box 2434, Queensland 4001, Australia
R. L. Frost*
Affiliation:
Inorganic Materials Research Program, Queensland University of Technology, 2 George Street, Brisbane, GPO Box 2434, Queensland 4001, Australia
W. N. Martens
Affiliation:
Inorganic Materials Research Program, Queensland University of Technology, 2 George Street, Brisbane, GPO Box 2434, Queensland 4001, Australia

Abstract

The mineral conichalcite from the western part of Bagdad mine, Bagdad, Eureka District, Yavapai County, Arizona, USA has been characterized by electronic, near-infrared (NIR), Raman and infrared (IR) spectroscopy. Scanning electron microscopy (SEM) images show that the mineral consists of bundles of fibres. Calculations based on the results of the energy dispersive X-ray analyses on a stoichiometric basis show the substitution of arsenate by 12 wt.% of phosphate in the mineral. Raman and IR bands are assigned in terms of the fundamental modes of AsO43− and PO43− molecules and are related to the mineral structure. Near-IR reflectance spectroscopy shows the presence of adsorbed water and hydroxyl units in the mineral. The Cu(II) coordination polyhedron in conichalcite can have at best pseudo-tetragonal geometry. The crystal field and tetragonal field parameters of the Cu(II) complex were calculated and found to agree well with the values reported for known tetragonal distortion octahedral complexes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Burns, R.G. (1970) Mineralogical Applications of Crystal Field Theory. Earth Sciences Series, Cambridge University Press, Cambridge, UK, 224 pp.Google Scholar
Ciobanu, A., Zalaru, F., Zalaru, C, Dumitrascu, F. and Draghici, C. (2003) Coordination compounds of Cu(II) with Schiff bases derived from formyl-menthone and aromatic amines. Acta Chimica Slovenica, 50, 441450.Google Scholar
Clark, L.A., Pluth, J.J., Steele, I., Smith, J.V. and Sutton, S.R. (1997) Crystal structure of austinite, CaZn(AsO4)OH. Mineralogical Magazine, 61, 677683.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, 539 pp.CrossRefGoogle Scholar
Ferguson, J., Wood, T.E. and Guggenheim, H.J. (1975) Electronic absorption spectra of tetragonal and pseudotetragonal cobalt(II). I. Dipotassium tetra-fluorocobaltate, dirubidium tetrafluorocobaltate, di-potassium magnesium tetrafluorocobaltate, and dirubidium magnesium tetrafluorocobaltate. Inorganic Chemistry, 14, 177183.CrossRefGoogle Scholar
Frost, R.L. (2004a) An infrared and Raman spectro-scopic study of natural zinc phosphates. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 60A, 14391445.CrossRefGoogle Scholar
Frost, R.L. (2004b) An infrared and Raman spectro-scopic study of the uranyl micas. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 60, 14691480.CrossRefGoogle Scholar
Frost, R.L. and Erickson, K.L. (2005) Near-infrared spectroscopic study of selected hydrated hydroxy-lated phosphates. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 61, 4550.CrossRefGoogle Scholar
Frost, R.L. and Weier, M. (2004a) Raman microscopy of autunite minerals at liquid nitrogen temperature. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 60, 23992409.CrossRefGoogle ScholarPubMed
Frost, R.L. and Weier, M. (2004b) Raman microscopy of selected autunite minerals. Neues Jahrbuch für Mineralogie, Monatshefte, 575594.Google Scholar
Frost, R.L. and Weier, MX. (2004c) Vibrational spectroscopy of natural augelite. Journal of Molecular Structure, 697, 207211.CrossRefGoogle Scholar
Frost, R.L., Kristof, J., Paroz, G.N., Tran, T.H. and Kloprogge, J.T. (1998) The role of water in the intercalation of kaolinite with potassium acetate. Journal of Colloid and Interface Science, 204, 227236.CrossRefGoogle ScholarPubMed
Frost, R.L., Martens, W.N. and Williams, P.A. (2002) Raman spectroscopy of the phase-related basic copper arsenate minerals olivenite, cornwallite, cornubite and clinoclase. Journal of Raman Spectroscopy, 33, 475484.CrossRefGoogle Scholar
Frost, R.L., Martens, W., Ding, Z., Kloprogge, J.T. and Johnson, T.E. (2003a) The role of water in synthesised hydrotalcites of formula MgxZn6-xCr2(OH)16(CO3).4H2O and NixCo6-xCr2(OH)16(CO3).4H2O - an infrared spectroscopic study. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 59A, 291302.CrossRefGoogle ScholarPubMed
Frost, R.L., Martens, W., Williams, P.A. and Kloprogge, J.T. (20036) Raman spectroscopic study of the vivianite arsenate minerals. Journal of Raman Spectroscopy, 34, 751759.CrossRefGoogle Scholar
Frost, R.L., Kloprogge, J.T. and Martens, W.N. (2004) Raman spectroscopy of the arsenates and sulphates of the tsumcorite mineral group. Journal of Raman Spectroscopy, 35, 2835.CrossRefGoogle Scholar
Griffith, W.P. (1970) Raman studies on rock-forming minerals. II. Minerals containing MO3, MO4, and MO6 groups. Journal of the Chemical Society [Section] A: Inorganic, Physical, Theoretical, 286291.Google Scholar
Hathaway, B.J. (1984) A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. Structure and Bonding (Berlin, Germany), 57 (Complex Chemistry), 55118.Google Scholar
Hathaway, B.J. and Billing, D.E. (1970) Electronic properties and stereochemistry of mononuclear complexes of the copper(II) ion. Coordination Chemistry Reviews, 5, 143207.CrossRefGoogle Scholar
Hawthorne, F.C. (1976) A refinement of the crystal structure of adamite. The Canadian Mineralogist, 14, 143148.Google Scholar
Hawthorne, F.C. (1990) Structural hierarchy in M[6]T[4].vphi.n minerals. Zeitschrift Kristallographie, 192, 152.Google Scholar
Jambor, J.L., Owens, D.R. and Dutrizac, J.E. (1980) Solid solution in the adelite group of arsenates. The Canadian Mineralogist, 18, 191195.Google Scholar
Keller, P., Hess, H. and Dunn, P.J. (1981) Jamesite, Pb2Zn2Fe53+O4(AsO4)5, a new mineral from Tsumeb, Namibia. Chemie der Erde, 40, 105109.Google Scholar
Keller, P., Hess, H. and Dunn, P.J. (1982) Johillerite, Na(Mg, Zn)3Cu(AsO4)3, a new mineral from Tsumeb, Namibia. Tschermaks Mineralogische und Petrographische Mitteilungen, 29, 169175.CrossRefGoogle Scholar
Kharisun, , Taylor, M.R., Bevan, D.J.M. and Pring, A. (1998) The crystal chemistry of duftite, PbCuAsO4(OH) and the β-duftite problem. Mineralogical Magazine, 62, 121130.CrossRefGoogle Scholar
Lever, A.B.P. (1984) Studies in Physical and Theoretical Chemistry, 2nd edition. Vol. 33, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 862 pp.Google Scholar
Martens, W., Frost, R.L. and Kloprogge, J.T. (2003a) Raman spectroscopy of synthetic erythrite, partially dehydrated erythrite and hydrothermally synthesized dehydrated erythrite. Journal of Raman Spectroscopy, 34, 9095.CrossRefGoogle Scholar
Martens, W., Frost, R.L. and Williams, P.A. (20036) Molecular structure of the adelite group of minerals - a Raman spectroscopic study. Journal of Raman Spectroscopy, 34, 104111.CrossRefGoogle Scholar
Martens, W.N., Frost, R.L., Kloprogge, J.T. and Williams, P.A. (2003c) The basic copper arsenate minerals olivenite, cornubite, cornwallite, and clinoclase: An infrared emission and Raman spectroscopic study. American Mineralogist, 88, 501508.CrossRefGoogle Scholar
Martens, W.N., Kloprogge, J.T., Frost, R.L. and Rintoul, L. (2004) Single-crystal Raman study of erythrite, Co3(AsO4)2.8H2O. Journal of Raman Spectroscopy, 35, 208216.CrossRefGoogle Scholar
Qurashi, M.M. and Barnes, W.H. (1963) Structures of the minerals of the descloizite and adelite groups. IV. Descloizite and conichalcite. 2. Structure of conichalcite. The Canadian Mineralogist, 7, 561–7.Google Scholar
Radcliffe, D. and Simmons, W.B., Jr. (1971) Austinite. Chemical and physical properties in relation to conichalcite. American Mineralogist, 56, 13571363.Google Scholar
Ramanaiah, M.V., Ravikumar, R.V.S.S.N., Srinivasulu, G., Reddy, BJ. and Rao, P.S. (1996) Detailed spectroscopic studies on cornetite from Southern Shaba, Zaire. Ferroelectrics, 175, 175182.CrossRefGoogle Scholar
Ravikumar, R.V.S.S.N., Madhu, N., Chandrasekhar, A.V., Reddy, B.J., Reddy, Y.P. and Rao, P.S. (1998) Cu(II), Mn(H) in tetragonal site in chryso-colla. Radiation Effects and Defects in Solids, 143, 263272.CrossRefGoogle Scholar
Reddy, B.J., Yamauchi, J., Ravikumar, R.V.S.S.N., Chandrasekhar, A.V. and Venkataramanaiah, M. (2004) Optical and EPR investigations on smithsonite minerals. Radiation Effects and Defects in Solids, 159(3), 141147.CrossRefGoogle Scholar
Reddy, K.M., Jacob, A.S., Reddy, BJ. and Reddy, Y.P. (1987) Optical absorption spectra of copper(2+) in brochantite. Physica Status Solidi B: Basic Research, 139(2), K145K150.CrossRefGoogle Scholar
Sreeramulu, P., Reddy, K.M., Jacob, A.S. and Reddy, BJ. (1990) UV-VIS, NIR, IR, and EPR spectra of connellite. Journal of Crystallographic and Spectroscopic Research, 20, 9396.CrossRefGoogle Scholar
Sumin De Portilla, V.I. (1974) Infrared spectroscopic investigation of the structure of some natural arsenates and the nature of hydrogen-bonds in their structures. The Canadian Mineralogist, 12, 262268.Google Scholar
Taggart, J.E. Jr. and Foord, E.E. (1980) Conichalcite, cuprian austinite, and plumboan conichalcite from La Plata County, Colorado [USA]. Mineralogical Record, 11, 3738.Google Scholar