Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:30:56.395Z Has data issue: false hasContentIssue false

Characteristics and origin of agates in sedimentary rocks from the Dryhead area, Montana, USA

Published online by Cambridge University Press:  05 July 2018

J. Götte*
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
R. Möckel
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
U. Kempe
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
I. Kapitonov
Affiliation:
A.P. Karpinsky All Russian Geological Research Institute (VSEGEI), 74 Sredny Pr., St.-Petersburg 199106, Russia
T. Vennemann
Affiliation:
Institut de Mineralogie et Géochimie, Université de Lausanne, UNIL-BFSH2, CH-1015 Lausanne, Switzerland
*

Abstract

Agates from the Bighorn district in Montana (USA), the so-called Dryhead area, and their adjacent host rocks have been examined in the present study. Analyses by XRD, polarizing microscopy, LA-ICP-MS, cathodoluminescence (CL), SEM and of oxygen isotopes were performed to obtain information surrounding the genesis of this agate type.

Investigations of the agate microstructure by polarizing microscopy and CL showed that chalcedony layers and macrocrystalline quartz crystals may have formed by crystallization from the same silica source by a process of self-organization. High defect densities and internal structures (e.g. sector zoning) of quartz indicate that crystallization went rapidly under non-equilibrium conditions. Most trace-element contents in macrocrystalline quartz are less than in chalcedony due to a process of ‘selfpurification’, which also caused the formation of Fe oxide inclusions and spherules.

Although the agates formed in sedimentary host rocks, analytical data indicate participation of hydrothermal fluids during agate formation. Trace elements (REE distribution patterns, U contents up to 70 ppm) and CL features of agate (transient blue CL), as well as associated minerals (fluorite, REE carbonates) point to the influence of hydrothermal processes on the genesis of the Dryhead agates. However, formation temperatures <120°C were calculated from O-isotope compositions between 28.9‰ (quartz) and 32.2‰ (chalcedony).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, P.J., Halliburton, L.E., Kohnke, E.E. and Bossoli, R.B. (1983) X-ray induced luminescence in crystalline SiO2 . Journal of Applied Physics, 54, 5369—5375.CrossRefGoogle Scholar
Anders, E. and Grevesse, N. (1989) Abundances of elements: Meteoric and solar. Geochimica et Cosmochimica Acta, 53, 197—214.CrossRefGoogle Scholar
Bambauer, H.U. (1961) Spurenelemente und g-Farbzentren in Quarzen aus Zerrkluften der Schweizer Alpen. Schweizerische Mineralogische Petrographische Mitteilungen, 41, 335—367.Google Scholar
Blankenburg, H.-J. (1988) Achat. VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, Germany, 203 pp.Google Scholar
Blankenburg, H.-J., Pilot, J. and Werner, C.D. (1982) Erste Ergebnisse der Sauerstoff-isotopenuntersu- chungen an Vulkanitachaten und ihre genetische Interpretation. Chemie der Erde, 41, 213—217.Google Scholar
Clark, R. (2002) Fairburn agate gem of South Dakota. Silverwind Agates, 104 pp.Google Scholar
Daggett, J. (1980) Dryhead. Lapidary Journal, December 1980, 1930—1946.Google Scholar
Egemeier, S.J. (1973) Cavern development by thermal waters with a possible bearing on ore deposition. PhD thesis, Stanford University.Google Scholar
Fallick, A.E., Jocelyn, J., Donnelly, T., Guy, M. and Behan, C. (1985) Origin of agates in volcanic rocks from Scotland. Nature, 313, 672—674.CrossRefGoogle Scholar
Fallick, A.E., Jocelyn, J. and Hamilton, P.J. (1987) Oxygen and hydrogen stable isotope systematics in Brazilian agates. Pp. 99—117 in: Geochemistry and Mineral Formation in the Earth Surface (R. Rodriguez-Clemente and Y. Tardy, editors). CSIC, Madrid.Google Scholar
Flem, B., Larsen, R.B., Gromstvedt, A. and Mansfeld, J. (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chemical Geology, 182, 237—247.CrossRefGoogle Scholar
Florke, O.W., Kohler-Herbertz, B., Langer, K. and Tonges, I. (1982) Water in microcrystalline quartz of volcanic origin: agates. Contributions to Mineralogy and Petrology, 80, 324—333.CrossRefGoogle Scholar
Fryer, B.J., Jackson, S.E. and Longerich, H.P. (1995) The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM-ICP-MS) in the earth sciences. The Canadian Mineralogist, 33, 303—312.Google Scholar
Godovikov, A.A., Ripinen, O.I. and Motorin, S.G. (1987) Agates. Nedra, Moscow, 368 pp.Google Scholar
Götze, J., Nasdala, L., Kleeberg, R. and Wenzel, M. (1998) Occurrence and distribution of “moganite” in agate/chalcedony: a combined micro-Raman, Rietveld, and cathodoluminescence study. Contributions to Mineralogy and Petrology, 133, 96—105.CrossRefGoogle Scholar
Götze, J., Plötze, M., Fuchs, H. and Habermann, D. (1999) Defect structure and luminescence behaviour of agate - results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63, 149—163.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Habermann, D. (2001a) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz — a review. Mineralogy and Petrology, 71, 225—250.Google Scholar
Götze, J., Plötze, M., Tichomirowa, M., Fuchs, H. and Pilot, J. (2001b) Aluminium in quartz as an indicator of the temperature of formation of agate. Mineralogical Magazine, 65, 407—413.CrossRefGoogle Scholar
Götze, J., Tichomirowa, M., Fuchs, H., Pilot, J. and Sharp, Z.D. (2001c) Geochemistry of agates: a trace element and stable isotope study. Chemical Geology, 175, 523—541.CrossRefGoogle Scholar
Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K. and Bray, C. (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis and gas chromatography. Geochimica et Cosmochimica Acta, 68, 3741—3759.CrossRefGoogle Scholar
Graetsch, H. (1994) Structural characteristics of opaline and microcrystalline silica minerals. Pp. 209—232 in: Silica: Physical Behavior, Geochemistry and Materials Applications (P.J. Heaney, C.T. Prewitt and G.V. Gibbs, editors). Reviews in Mineralogy and Geochemistry, 29, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Gray, A.L. (1985) Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110, 551—556.CrossRefGoogle Scholar
Harris, C. (1989) Oxygen-isotope zonation of agates from Karoo volcanics of the Skeleton Coast, Namibia. American Mineralogist, 74, 476—481.Google Scholar
Heaney, P.J. (1993) A proposed mechanism for the growth of chalcedony. Contributions to Mineralogy and Petrology, 115, 66—74.CrossRefGoogle Scholar
Heaney, P.J. and Davis, A.M. (1995) Observation and origin of self-organized textures in agates. Science, 269, 1562—1565.CrossRefGoogle ScholarPubMed
House, M. (1989) Geology of the Dorset Coast. The Geologist's Association, London, 170 pp.Google Scholar
Jourdan, A.-L., Vennemann, T.W., Mullis, J., Ramseyer, K. and Spiers, C.J. (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. European Journal of Mineralogy, 21, 219—231.CrossRefGoogle Scholar
Kempe, U., Götze, J., Belyatsky, B.V. and Plötze, M. (1997) Ce-anomalies in monazite, fluorite, and agate from Permian volcanics of the Saxothuringian (Germany). Journal of the Czech Geological Society, 42, 38.Google Scholar
Klemm, A. (1990) Fractionation of oxygen isotopes at the faces of smoky quartz. Zeitschrift fur Naturforschung, 46, 11331134.CrossRefGoogle Scholar
Lopez, D. (2000) Geological Map of the Bridger 30x60 Quadrangle, Montana. Geological Map Series, No. 58, Montana Bureau of Mines and Geology, USA.Google Scholar
Maliva, R.G. (1987) Quartz geodes: Early diagenetic silicified anhydrite nodules related to dolomitization. Journal of Sedimentary Research, 57, 1054—1059.Google Scholar
Mariano, A.N. (1989) Economic geology of rare earth minerals. Pp. 309—338 in: Geochemistry and Mineralogy of Rare Earth Elements (B.R. Lipin and G.A. McKay, editors). Reviews in Mineralogy, 21, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartz- albite-anorthite-water. Geochimica et Cosmochimica Acta, 43, 11311140.CrossRefGoogle Scholar
McEldowney, R.C., Abshier, J.F. and Lootens, D.J. (1977) Geology of uranium deposits in the Madison Limestone, Little Mountain area, Big Horn County, Wyoming. Pp. 321—336 in: Exploration frontiers of the Central and Southern Rockies. (H.K. Veal, editor). Rocky Mountain Association of Geologists, USA.Google Scholar
Meheut, M., Lazzeri, M., Balan, E. and Mauri, F. (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: Prediction from first-principles density-functional theory. Geochimica et Cosmochimica Acta, 71, 3170—3181.CrossRefGoogle Scholar
Merino, E., Wang, Y. and Deloule, E. (1995) Genesis of agates in flood basalts: Twisting of chalcedony fibres and trace-element geochemistry. American Journal of Science, 295, 1156—1176.CrossRefGoogle Scholar
Miehe, G., Graetsch, H. and Florke, O.W. (1984) Crystal structure and growth fabric of length-fast chalcedony. Physical and Chemistry of Minerals, 10, 197—199.CrossRefGoogle Scholar
Milliken, K.L. (1979) The silicified evaporate syndrome — two aspects of silicification history of former evaporate nodules from Southern Kentucky and Northern Tennessee. Journal of Sedimentary Petrology, 49, 245—256.Google Scholar
Miyoshi, N., Yamaguchi, Y. and Makino, K. (2005) Successive zoning of Al and H in hydrothermal vein quartz. American Mineralogist, 90, 310—315.CrossRefGoogle Scholar
Mockel, R. and Götze, J. (2007) Achate aus Vulkaniten des Erzgebirgischen Beckens, Sachsen. Veroffentlichungen des Museums fUr Naturkunde Chemnitz, 30, 25—60.Google Scholar
Mockel, R., Götze, J., Sergeev, S.A., Kapitonov, I.N., Adamskaya, E.V., Goltsin, N.A. and Vennemann, T. (2009) Trace-element analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): a case study for agates from Nowy Košciol, Poland. Journal of the Siberian Federal University Engineering and Technologies, 2, 123—238.Google Scholar
Monecke, T., Kempe, U. and Götze, J. (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth and Planetary Science Letters, 202, 709—724.CrossRefGoogle Scholar
Moxon, T. (2002) Agate: a study of ageing. European Journal of Mineralogy, 14, 1109—1118.CrossRefGoogle Scholar
Moxon, T. and Reed, S.J.B. (2006) Agate and chalcedony from igneous and sedimentary hosts aged from 13 to 3480 Ma: a cathodoluminescence study. Mineralogical Magazine, 70, 485—498.CrossRefGoogle Scholar
Moxon, T. and Rios, S. (2004) Moganite and water content as a function of age in agate: an XRD and thermogravimetric study. European Journal of Mineralogy, 16, 269—278.CrossRefGoogle Scholar
Moxon, T., Reed, S.J.B. and Zhang, M. (2007) Metamorphic effects on agate found near the Shap granite, Cumbria, England: as demonstrated by petrography, X-ray diffraction and spectroscopic methods. Mineralogical Magazine, 71, 461—476.CrossRefGoogle Scholar
Neuser, R.D., Bruhn, F., Götze, J., Habermann, D. and Richter, D.K. (1995) Kathodolumineszenz: Methodik und Anwendung. Zentralblatt fur Geologie und Palāontologie I, 1—2, 287—306.Google Scholar
Onasch, C.M. and Vennemann, T.W. (1995) Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology, 23, 11031106.2.3.CO;2>CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K. and Mullis, J. (1992) Microdistribution of aluminium, lithium and sodium in quartz: possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534—544.Google Scholar
Ramseyer, K. and Mullis, J. (1990) Factors influencing short-lived blue cathodoluminescence of alpha- quartz. American Mineralogist, 75, 791—800.Google Scholar
Rooney, L.F. (1957) Hydrothermal alteration of phosphoria mudstones. Journal of Sedimentary Petrology, 27, 453—459.CrossRefGoogle Scholar
Sharp, Z.D. (1992) In situ laser microprobe techniques for stable isotope analysis. Chemical Geology, 101, 3—19.Google Scholar
Siegel, G.H. and Marrone, M.J. (1981) Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of nonbridging oxygen defect centres. Journal of Noncrystalline Solids, 45, 235—247.Google Scholar
Spendlove, E. (1981) Dryhead agate. Rock & Gem, 11, 52—79.Google Scholar
Stevens-Kalceff, M.A. and Phillips, M.R. (1995) Cathodoluminescence micro-characterization of the defect structure of quartz. Physical Review B, 52, 3122—313.Google Scholar
Strauch, G., Nitzsche, H.-M. and Holzhey, G. (1994) Isotopenuntersuchungen an Rhyolithen und Achatbildungen. Neues Jahrbuch Mineralogie Abhandlungen, 165, 103104.Google Scholar
Tanaka, T. and Kamioka, H. (1994) Trace element abundance in agate. Geochemical Journal, 28, 359—362.CrossRefGoogle Scholar
Taut, T., Kleeberg, R. and Bergmann, J. (1998) Seifert Software: The new Seifert Rietveld program BGMN and its application to quantitative phase analysis. Materials Structure, 5, 57—66.Google Scholar
Tucker, M.E. (1976) Quartz replaced anhydrite nodules (‘Bristol diamonds’) from the Triassic of the Bristol District. Geology Magazine, 113, 569—574.CrossRefGoogle Scholar
Ulmer-Scholle, D.S. and Scholle, P.A. (1994) Replacement of evaporites within the Permian Park City Formation, Bighorn Basin, Wyoming, USA. Sedimentology, 41, 12031222.CrossRefGoogle Scholar
Zenz, J. (2005) Agate. Bode Verlag, Haltern, Germany, 656 pp. (in German).Google Scholar
Zielinski, R.A. (1982) Uraniferous opal, Virgin Valley, Nevada: Conditions of formation and implications for uranium exploration. Journal of Geochemical Exploration, 16, 197—216.CrossRefGoogle Scholar