Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:41:50.406Z Has data issue: false hasContentIssue false

Cerite: a new supergroup of minerals and cerite-(La) renamed ferricerite-(La)

Published online by Cambridge University Press:  30 October 2020

Daniel Atencio*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080São Paulo, SP, Brasil
Andrezza de Almeida Azzi
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080São Paulo, SP, Brasil
*
*Author for correspondence: Daniel Atencio, Email: [email protected]

Abstract

The cerite supergroup is established and includes the cerite group (silicates) and merrillite group (phosphates). Cerite-group minerals are cerite-(Ce), ferricerite-(La), aluminocerite-(Ce) and taipingite-(Ce). The merrillite group is subdivided into two subgroups: merrillite (merrillite, ferromerrillite, keplerite and matyhite) and whitlockite (whitlockite, strontiowhitlockite, wopmayite and hedegaardite). Cerite-(La) has been renamed ferricerite-(La). The new nomenclature has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Britvin, S.N., Pakhomovskii, Y.A., Bogdanova, A.N. and Skiba, V.I. (1991) Strontiowhitlockite, Sr9Mg(PO3OH)(PO4)6, a new mineral from the Kovdor deposit Kola Peninsula U.S.S.R. The Canadian Mineralogist, 29 8793.Google Scholar
Britvin, S.N., Krivovichev, S.V. and Armbruster, T. (2016) Ferromerrillite, Ca9NaFe2+(PO4)7, a new mineral from the Martian meteorites and some insights into merrillite–tuite transformation in shergottites. European Journal of Mineralogy, 28, 125136.CrossRefGoogle Scholar
Britvin, S.N., Galuskina, I.O., Vlasenko, N.S., Vereshchagin, O.S., Bocharov, V.N., Krzhizhanovskaya, M.G., Shilovskikh, V.V., Galuskin, E.V., Vapnik, Y. and Obolonskaya, E.V. (2020) Keplerite, IMA 2019-108; in: CNMNC Newsletter 54. Mineralogical Magazine, 84, 359365, https://doi.org/10.1180/mgmGoogle Scholar
Calvo, C. and Gopal, R. (1975) The crystal structure of whitlockite from the Palermo quarry. American Mineralogist, 60, 120133.Google Scholar
Cooper, M.A., Hawthorne, F.C., Abdu, Y.A., Ball, N.A., Ramik, R.A. and Tait, K.T. (2013) Wopmayite, ideally Ca6Na3Mn(PO4)3(PO3OH)4, a new phosphate mineral from the Tanco Mine Bernic Lake Manitoba: description and crystal structure. The Canadian Mineralogist, 51, 93106.CrossRefGoogle Scholar
Cronstedt, A.F. (1751) Rön och försök giorde med trenne järnmalms arter. K. Vetenskaps Akademiens Handlingar, 12, 226232.Google Scholar
Deyneko, D., Petrova, D., Leonidova, O., Nikiforov, I. and Lazoryak, B. (2017) Ferroelectric properties and structural refinement of whitlockite-type phosphate Ca8.5Pb0.5Ho(PO4)7. Powder Diffraction, 32, S168S171.CrossRefGoogle Scholar
Frondel, C. (1941) Whitlockite: a new calcium phosphate, Ca3(PO4)2. American Mineralogist, 26, 145152.Google Scholar
Hisinger, W. and Berzelius, J.J. (1804) Cerium ein neues Metall aus einer Schwedischen Steinart Bastnäs Tungestein genannt. Neues Allgemeines Journal der Chemie, 2, 397418.Google Scholar
Holtstam, D., Bindi, L., Karlsson, A., Langhof, J., Zack, T., Bonazzi, P. and Persson, A. (2020) Kesebolite-(Ce), CeCa2Mn(AsO4)[SiO3]3, a new REE-bearing arsenosilicate mineral from the Kesebol Mine, Åmål, Västra Götaland, Sweden. Minerals, 10, 385.CrossRefGoogle Scholar
Hwang, S.L., Shen, P., Chu, H.T. Yui, T.F. Varela, M.E. and Iizuka, Y. (2019) New minerals tsangpoite Ca5(PO4)2(SiO4) and matyhite Ca9(Ca0.50.5)Fe(PO4)7 from the D'Orbigny angrite. Mineralogical Magazine, 83, 293313.CrossRefGoogle Scholar
Lazoryak, B.I., Deyneko, D.V., Aksenov, S.M., Stefanovich, S.Y., Fortalnova, E.A., Petrova, D.A., Baryshnikova, O.V., Kosmyna, M.B. and Shekhovtsov, A.N. (2018) Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions. Zeitschrift für Kristallographie – Crystalline Materials, 233, 453462.CrossRefGoogle Scholar
Lipp, C. and Schleid, T. (2008) Hydrogenoxosilicates of the lanthanides II. La9OMg[SiO4]6[SiO3(OH)] with cerite-like structure. Journal of Alloys and Compounds, 451, 657661.CrossRefGoogle Scholar
McCubbin, F.M., Phillips, B.L., Adcock, C.T., Tait, K.T., Steele, A., Vaughn, J.S., Fries, M.D., Atudorei, V., Vander Kaaden, K.E. and Hausrath, E.M. (2018) Discreditation of bobdownsite and the establishment of criteria for the identification of minerals with essential monofluorophosphate (PO3F2-). American Mineralogist, 103, 13191328.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2020) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC). Newsletter 57. Mineralogical Magazine, 84, 791794.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Moore, P.B. and Shen, J. (1983) Cerite, RE9(Fe3+,Mg)(SiO4)6(SiO3OH)(OH)3: its crystal structure and relation to whitlockite. American Mineralogist, 68, 9961003.Google Scholar
Nestola, F., Guastoni, A., Cámara, F., Secco, L., Dal Negro, A., Pedron, D. and Beran, A. (2009) Aluminocerite-Ce: A new species from Baveno Italy: Description and crystal-structure determination. American Mineralogist, 94, 487493.CrossRefGoogle Scholar
Pakhomovsky, Y.A., Men'Shikov, Y.P., Yakovenchuk, V.N., Ivanyuk, G.Y., Krivovichev, S.V. and Burns, P.C. (2002) Cerite-(La), (LaCeCa)9(FeCaMg)(SiO4)3[SiO3(OH)]4(OH)3, a new mineral species from the Khibina alkaline massif: occurrence and crystal structure. The Canadian Mineralogist, 40, 11771184.CrossRefGoogle Scholar
Qu, K., Sima, X., Fan, G., Li, G., Shen, G., Chen, H., Liu, X., Yin, Q., Li, T. and Wang, Y. (2020) Taipingite-(Ce), (Ce73+,Ca2)Σ9Mg(SiO4)3[SiO3(OH)]4F3, a new mineral from the Taipingzhen REE deposit, North Qinling Orogen, central China. Geoscience Frontiers, 11, 23392346.CrossRefGoogle Scholar
Rumsey, M.S, Mills, S.J. and Sprattl, J. (2010) Natropharmacoalumite, NaAl4[(OH)4(AsO4)3]·4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineralogical Magazine, 74, 929936.CrossRefGoogle Scholar
Tait, K.T., Barkley, M.C., Thompson, R.M., Origlieri, M.J., Evans, S.H., Prewitt, C.T. and Yang, H.X. (2011) Bobdownsite, a new mineral species from Big Fish River, Yukon, Canada, and its structural relationship with whitlockite-type compounds. The Canadian Mineralogist, 49, 10651078.CrossRefGoogle Scholar
Xie, X., Yang, H., Gu, X. and Downs, R.T. (2015) Chemical composition and crystal structure of merrillite from the Suizhou meteorite. American Mineralogist, 100, 27532756.CrossRefGoogle Scholar
Wherry, E.T. (1917) Merrillite, meteoritic calcium phosphate. American Mineralogist, 2, 119.Google Scholar
Witzke, T., Phillips, B.L., Woerner, W., Coutinho, J.M.V., Färber, G. and Contreira Filho, R.R. (2015) Hedegaardite IMA 2014-069. CNMNC Newsletter No. 23, February 2015, page 54; Mineralogical Magazine, 79, 5158.Google Scholar