Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:06:43.791Z Has data issue: false hasContentIssue false

The central Kenya peralkaline province: a unique assemblage of magmatic systems

Published online by Cambridge University Press:  05 July 2018

R. Macdonald*
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
B. Bagiński
Affiliation:
IGMiP Faculty of Geology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
*

Abstract

The review focuses on the evolution of five contiguous peralkaline salic complexes in the south-central Kenya Rift Valley, stressing new developments of general significance to peralkaline magmatism. The complexes have evolved dominantly by combinations of fractional crystallization and magma mixing; volatile-melt interactions, remobilization of plutonic rocks and crystal mushes, and carbonate-silicate liquid immiscibility have been additional petrogenetic processes. Geochemical and experimental studies have shown that pantelleritic magmas can be generated by fractional crystallization of trachyte and high-silica rhyolite. Melts of comenditic composition were also formed by fractionation of trachyte but also locally by partial meltingof syenites. Studies of apparent partition coefficients have provided some of the first data on element distribution between phenocrysts and peralkaline silicic melts. Compositional zonation has been ubiquitous in the complexes, probably a result of the very low viscosity of the magmas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachmann, O., Dungan, M.A. and Lipman, P.W. (2002) The Fish Canyon magma body, San Juan volcanic field, Colorado: rejuvenation and eruption of an upper-crustal batholith. Journal of Petrology, 43, 1469—1503.CrossRefGoogle Scholar
Bacon, C.R. and Lowenstern, J.B. (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth and Planetary Science Letters, 233, 277—293.CrossRefGoogle Scholar
Bailey, D.K. (1982) Mantle metasomatism — continuing chemical change within the Earth. Nature, 296, 525—530.CrossRefGoogle Scholar
Bailey, D.K. (1987) Mantle metasomatism — perspective and prospect. Pp. 1—13 in: Alkaline Igneous Rocks(J.G. Fitton and B.G.J. Upton, editors). Special Publication, 30, The Geological Society, London.Google Scholar
Bailey, D.K. and Kearns, S.L. (2007) Carbon in the peralkaline association: footprints in the ashes. Goldschmidt Conference Abstracts, A52.Google Scholar
Bailey, D.K. and Macdonald, R. (1987) Dry peralkaline felsic liquids and carbon dioxide flux through the Kenya Rift Zone. Pp. 91—105 in: Magmatic Processes: PhysiochemicalPrinciples. (B.O. Mysen, editor). Special Publication, 1, The Geochemical Society.Google Scholar
Black, S., Macdonald, R. and Kelly, M.R. (1997) Crustal origin for peralkaline rhyolites from Kenya: evidence from U-series disequilibria and Th-iso- topes. Journal of Petrology, 38, 277—297.CrossRefGoogle Scholar
Charlier, B.L.A., Wilson, C.J.N., Lowenstern, J.B., Blake, S., van Calsteren, P.W. and Davidson, J.P. (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U- Th and U-Pb systematics in zircons. Journal of Petrology, 46, 3—32.CrossRefGoogle Scholar
Clarke, M.C.G. (1987) Compilation and interpretation of rock geochemical data for the Longonot Volcano and the Greater Olkaria Volcanic Complex. British Geological Survey Report, Genken /5/.Google Scholar
Clarke, M.C.G., Woodhall, D.G., Allen, D. and Darling, G. (1990) Geological, volcanological and hydrogeological controls on the occurrence ofgeothermal activity in the area surrounding Lake Naivasha, Kenya. Report. Nairobi: Ministry of Energy.Google Scholar
Davies, G.R. and Macdonald, R. (1987) Crustal influences in the petrogenesis of the Naivasha basalt-comendite complex: combined trace element and Sr-Nd-Pb isotope constraints. Journal of Petrology, 28, 1009—1031.CrossRefGoogle Scholar
Edgar, C.J., Wolff, J.A., Nichols, H.J., Cas, R.A.F. and Marti, J. (2002) A complex Quaternary ignimbrite- forming phonolitic eruption, the Poris Member of the Diego Hernandez Formation (Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 118, 99—130.CrossRefGoogle Scholar
Ferla, P. and Meli, C. (2006) Evidence of magma mixing in the ‘Daly Gap’ of alkaline suites: a case study from the enclaves of Pantelleria. Journal of Petrology, 47, 1467—1507.CrossRefGoogle Scholar
Garbarino, C. and Maccioni, L. (1968) Contributo alla conoscenza delle vulcaniti dell’Isola di S. Pietro (Sardegna sud-occidentale). Nota 1. — Le commen- diti. Periodico di Mineralogia, 37, 895—983.Google Scholar
Hawkesworth, C.J., Blake, S., Evans, P., Hughes, R., Macdonald, R., Thomas, L.E., Turner, S.P. and Zellmer, G. (2000) Time scales of crystal fractionation in magma chambers — integrating physical, isotopic and geochemical perspectives. Journal of Petrology, 41, 991—1006.CrossRefGoogle Scholar
Heumann, A. and Davies, G.R. (2004) U-Th disequilibrium and Rb-Sr age constraints on the magmatic evolution of peralkaline rhyolites from Kenya. Journal ofPetrology, 43, 557—577.Google Scholar
Lacroix, A. (1930) Les roches hyperalcalines du Massif du Fantale et du col de Balla. Memoiresdela Societe Geologique de France, 14, 89—102.Google Scholar
Leat, P.T., Macdonald, R. and Smith, R.L. (1984) Geochemical evolution of the Menengai caldera volcano, Kenya. Journal of Geophysical Research, 89, 8571—8592.CrossRefGoogle Scholar
Macdonald, R. (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bulletin Volcanologique, 38, 498—516.CrossRefGoogle Scholar
Macdonald, R. and Scaillet, B. (2006) The central Kenya peralkaline province: Insights into the evolution of peralkaline salic magmas. Lithos, 91, 59—73.CrossRefGoogle Scholar
R., Macdonald, Davies, G.R., Bliss, C.M., Leat, P.T., Bailey, D.K. and Smith, R.L. (1987) Geochemistry of high-silica peralkaline rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28, 979—1008.Google Scholar
Macdonald, R., Kjarsgaard, B.A., Skilling, I.P., Davies, G.R., Hamilton, D.L. and S., Black (1993) Liquid immiscibility between trachyte and carbonate in ash flow tuffs from Kenya. Contributions to Mineralogy and Petrology, 114, 276—287.CrossRefGoogle Scholar
Macdonald, R., Navarro, J.M., Upton, B.G.J. and Davies, G.R. (1994) Strong compositional zonation in peralkaline magma: Menengai, Kenya Rift Valley. Journal of Volcanology and Geothermal Research, 60, 301—325.CrossRefGoogle Scholar
Macdonald, R., Rogers, N.W., Fitton, J.G., S., Black and Smith, M. (2001) Plume-lithosphere interactions in the generation of the Kenya Rift, East Africa. Journal ofPetrology, 42, 877—900.Google Scholar
Macdonald, R., Rogers, N.W. and Tindle, A.G. (2007) Distribution of germanium between phenocrysts and melt in peralkaline rhyolites from the Kenya Rift Valley. Mineralogical Magazine, 71, 703—713.CrossRefGoogle Scholar
Macdonald, R., Belkin, H.E., Fitton, J.G., Rogers, N.W., Belkin, H.E., Tindle, A.G. and Marshall, A.S. (2008a) The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile- melt interactions in the genesis of a young basalt- peralkaline rhyolite suite, the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 49, 1515—1547.Google Scholar
Macdonald, R., Baginski, B., Belkin, H.E., Dzierzanowski, P. and Jezak, L. (2008b) REE partitioning between apatite and melt in a peralkaline volcanic suite, Kenya Rift Valley. Mineralogical Magazine, 72, 1147—1161.Google Scholar
Marshall, A.S., Macdonald, R., Rogers, N.W., Fitton, J.G., Tindle, A.G., Nejbert, K and Hinton, R.W. (2009) Extreme fractionation of peralkaline silicic magmas: the Greater Olkaria Volcanic Complex, Kenya Rift Valley. Journal of Petrology, 50, 323—359.CrossRefGoogle Scholar
Peccerillo, A., Barberio, M.R., Yirgu, G., Ayalew, D., Barbieri, M. and Wu, T.W. (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. Journal of Petrology, 44, 2003—2032.CrossRefGoogle Scholar
M., Ren, Omenda, P.A., Anthony, E.Y., White, J.C. Macdonald, R. and Bailey, D.K. (2006) Application of the QUILF thermobarometer to the peralkaline trachytes and pantellerites of the Eburru volcanic complex, East African Rift, Kenya. Lithos, 91, 109124.Google Scholar
Reubi, O. and Nicholls, I.A. (2005) Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur volcanic field, Bali, Indonesia. Journal of Petrology, 46, 13671391.CrossRefGoogle Scholar
Rogers, N.W. (2006) Basaltic magmatism and the geodynamics of the East African Rift System. Pp. 7793 in: The Afar Volcanic Province within the East African Rift System. (G., Yirgu, C.J., Ebinger, and P.K.H., Maguire, editors). Special Publication, 259, The Geological Society, London.Google Scholar
Rogers, N.W., Evans, P.J., Blake, S., Scott, S.C. and Hawkesworth, C.J. (2004) Rates and timescales of fractional crystallization from 238U-230Th-226Ra disequilibria in trachyte lavas from Longonot volcano, Kenya. Journal of Petrology, 45, 17471776.CrossRefGoogle Scholar
Scaillet, B. and Macdonald, R. (2001) Phase relations of peralkaline silicic magmas and petrogenetic relationships. Journal of Petrology, 42, 825845.CrossRefGoogle Scholar
Scaillet, B. and Macdonald, R. (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. Journal of Petrology, 44, 18671894.CrossRefGoogle Scholar
Scaillet, B. and Macdonald, R. (2006a) Experimental constraints on pre-eruption conditions of pantellerite magmas: Evidence from the Eburru complex, Kenya Rift. Lithos, 91, 95108.Google Scholar
Scaillet, B. and Macdonald, R. (2006b) Experimental and thermodynamic constraints on the sulphur yield of peralkaline and metaluminous silicic flood eruptions. Journal of Petrology, 47, 14131437.CrossRefGoogle Scholar
Scott, S.C. (1982) Evidence from Longonot volcano, Central Kenya, lending further support to the argument for a coexisting CO2-rich vapour in peralkaline magma. Geological Magazine, 119, 215217.CrossRefGoogle Scholar
Scott, S.C. and Bailey, D.K. (1986) Coeruption of contrasting magmas and temporal variations in magma chemistry at Longonot volcanom central Kenya. Bulletin Volcanologique, 47, 849873.CrossRefGoogle Scholar
Scott, S.C. and Skilling, I.P. (1999) The role of tephrochronology in recognising synchronous caldera-forming events at the Quaternary volcanoes Longonot and Suswa, south Kenya Rift. Pp. 4767 in: Volcanoes in the Quaternary(C.R. Firth and W.J. McGuire, editors). Special Publication, 161, The Geological Society, London.Google Scholar
Skilling, I.P. (1988) The geological evolution of Suswa volcano, Kenya. PhD thesis, Lancaster University, UK.Google Scholar
Smith, V.C., Shane, P. and Nairn, I.A. (2004) Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotorua eruptive episode: implications for magma storage in the Okataina Volcanic Centre, New Zealand. Journal of the Geological Society, London, 161, 757772.CrossRefGoogle Scholar
Sumner, J.M. and Wolff, J. (2003) Petrogenesis of mixed-magma, high-grade, peralkaline ignimbrite ‘TL’(Gran Canaria): diverse styles of mixing in a replenished, zoned magma chamber. Journal of Volcanology and Geothermal Research, 126, 109126.CrossRefGoogle Scholar
Swain, C.J. (1992) The Kenya Rift axial gravity high: a reinterpretation. Tectonophysics, 204, 5970.CrossRefGoogle Scholar
Tchalikian, A., Nebel, O., Elburg, M.A., Andriessen, P.A.M. and Davies, G.R. (2007) New insights into peralkaline magma chamber processes in the Naivasha area, Kenya Dome. Goldschmidt Conference Abstracts, A1008.Google Scholar
Troll, V.R. and Schmincke, H.-U. (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A’,Gran Canaria, Canary Islands. Journal of Petrology, 43, 243270.CrossRefGoogle Scholar
Wilding, M.C., Macdonald, R., Davies, J.E. and Fallick, A.E. (1993) Volatile characteristics of peralkaline rhyolites from Kenya: an ion microprobe, infrared spectroscopic and hydrogen isotope study. Contributions to Mineralogy and Petrology, 114, 264275.CrossRefGoogle Scholar