Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T21:38:30.722Z Has data issue: false hasContentIssue false

Centennialite, CaCu3(OH)6Cl2.nH2O, n ≈ 0.7, a new kapellasite-like species, and a reassessment of calumetite

Published online by Cambridge University Press:  02 January 2018

Wilson A. Crichton*
Affiliation:
ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
Harald Müller
Affiliation:
ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
*

Abstract

The new mineral centennialite (IMA 2013-110), CaCu3(OH)6Cl2·nH2O, was identified from three cotype specimens originating from the Centennial Mine, Houghton County, Michigan, USA, where it occurs as a secondary product, after acid water action upon supergene Cu mineralization in association with, and essentially indivisible from, other copper-containing minerals such as calumetite and atacamite family minerals. It forms as pale to azure blue encrustations, often taking a botryoidal form. Centennialite is trigonal, , a = 6.6606(9) Å, c = 5.8004(8) Å, V= 222.85(6) Å3, Z= 1. The strongest powder X-ray diffraction lines are dobs/Å [I%] (hkl), 5.799 [100] (001), 2.583 [75] (201), 2.886 [51] (111), 1.665 [20] (220), 1.605 [17] (023), 1.600 [15] (221), 1.444 [11] (222). The X-ray refined structure forms a kagome net of planar coordinated CuO4 units with Jahn-Teller coordinated Cl apices to form octahedra that edge-share to in-plane adjacent and flattened CaO6 octahedra, which are centred about the lattice origin. All oxygen sites are protonated and shared between one Ca-octahedron and one CuO4 planar unit. Three protonated sites are linked, by hydrogen-bonding to Cl sites, which sit on the triad axis. Each lattice has one Cl above and one below the Ca-Cu polyhedral plane. Consequently, the layers are stacked, along ⟨001⟩, with two Cl sites between layers. In addition to this kapellasite-like topology, an extra c/2 site is identified as being variably water-hosting and extends the coordination of the Ca-site to 8-fold, akin to the body-diagonal Pb-Cu sheet in murdochite. Centennialite conforms to the description of the ‘Unidentified Cu-Ca-Cl Mineral’ noted in Heinrich's Mineralogy of Michigan and is almost certainly identical to the supposed hexagonal basic calcium-copper hydroxychloride monohydrate of Erdös et al. (1981). We comment upon relationships between calumetite and centennialite and propose a substructure model for a synthetic calumetite-like phase that is related directly to centennialite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Powder XRD file number at the International Centre for Diffraction Data, http://www.icdd.com/

References

Boultif, A. and Louër, D. (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. Journal of Applied Crystallography, 24, 987993.CrossRefGoogle Scholar
Brandes, P.T. and Robinson, G.W. (2002) A Preliminary Study of Calumetite and Other Copper Chloride Mineralization on the Keweenaw Peninsula, Michigan. Unpublished MSc thesis, Michigan Technological University, USA.Google Scholar
Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M. (2004) Herbertsmithite, Cu3Zn(OH)6Cl2, a new species, and a definition of paratacamite. Mineralogical Magazine, 68, 527539.CrossRefGoogle Scholar
Christ, C.L. and Clark, J.R. (1955) The crystal structure of murdochite. American Mineralogist, 40, 907916.Google Scholar
Chu, S., McQueen, T.M., Chisnell, R., Freedman, D.E., Müller, P., Lee, Y.S. and Nocera, D.G. (2010) Cu2+ (S = ½) Kagomé antiferromagnet: MgxCu4−x(OH)6Cl2 . Journal of the American Chemical Society, 132, 5570.CrossRefGoogle Scholar
Clissold, M.E., Leverett, P. and Williams, P.A. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, fromWidgiemooltha,Western Australia. The Canadian Mineralogist, 45, 317320.CrossRefGoogle Scholar
Colman, R.H., Ritter, C. and Wills, A.S. (2008) Toward perfection: Cu3Zn(OH)6Cl2, a new model S = ½ Kagome antiferromagnet. Chemistry of Materials, 20, 68966899.CrossRefGoogle Scholar
Colman, R.H., Sinclair, A. and Wills, A.S. (2011) Magnetic and crystallographic studies of Mg-herbertsmithite, γ-Cu3Mg(OH)6Cl2 – A new S = ½ kagome magnet and candidate spin liquid. Chemistry of Materials, 23, 18111817.CrossRefGoogle Scholar
Dubler, E., Vedani, A. and Oswald, H.R. (1983) New structure determination of murdochite, Cu6PbO8 . Acta Crystallographica, C39, 11431146.Google Scholar
Erdös, E., Denzler, E. and Altorfer, H. (1981) Thermochemical, crystallographic and infrared studies on calcium copper hydroxychloride hydrates. Thermochimica Acta, 44, 345361.CrossRefGoogle Scholar
Fak, B. Kermarrec, E. Messio, L., Bernu, B., Lhuilier, C., Bert, F., Mendels, P., Koteswararo, B., Bouquet, F., Ollivier, J., Hillier, A.D., Amato, A., Colman, R. H. and Wills, A.S. (2012) Physical Review Letters, 109, 037208.CrossRefGoogle Scholar
Feitknecht, W. (1949) Über Doppelhydroxyde und basische Doppelsalze. 7. Über basische Doppelchloride des Kupfers. Helvetica Chimica Acta, 32, 16531667.CrossRefGoogle Scholar
Fleet, M.E. (1975) The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, B31, 183187.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Thompson, A., Graafsma, H., Kvick, Å and Moy, J.P. (1995) Calibration and correction of distortions in 2D detector systems. Review of Scientific Instruments, 66, 27292733.CrossRefGoogle Scholar
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. and Häusermann, D. (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Research, 14, 235248.CrossRefGoogle Scholar
Heinrich, E.W. and Robinson, G.W. (2004) Mineralogy of Michigan. A. E. Seaman Mineral Museum, Michigan Technical University, Houghton, Michigan, USA.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Jansen, O., Richter, J. and Rosner, H. (2008) Modified kagome physics in the natural spin-½ kagome systems: Kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg (OH)6Cl2 . Physical Review Letters, 101, 106403.CrossRefGoogle Scholar
Jarek, U., Holynksa, M., Slepokura, K. and Lis, T. (2007) Calcium chloride rhenate(VII) dehydrate. Acta Crystallographica, C63, 7779.Google Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A., Dini, M. and Donoso, A.A.M. (2013a) Leverettite from the Torrecillas miner, Iquique Province, Chile: the Coanalogue of herbertsmithite. Mineralogical Magazine, 77, 30473054.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M.D., Dini, M. and Donoso, A.A.M. (2013b) Paratacamite-(Mg), Cu3(Mg,Cu)Cl2(OH)6; a new substituted basic copper chloride mineral from Camerones, Chile. Mineralogical Magazine, 77, 3133–3124.CrossRefGoogle Scholar
Kermarrec, E., Zorko, A., Bert, F., Colman, R.H., Koteswararao, B., Bouquet, F., Bonville, P., Hillier, A., Amato, A., van Tol, J., Ozarowski, A., Wills, A.S. and Mendels, P. (2014) Spin dynamics and disorder effects in the S = ½ kagome Heisenberg spin-liquid phase of kapellasite. Physical Review B, 90, 205103.CrossRefGoogle Scholar
Krause, W., Bernhardt, H.J., Braithwaite, R.S.W., Kolitsch, U. and Pritchard, R. (2006) Kapellasite, Cu3Zn (OH)6Cl2, a new mineral from Lavrion, Greece, and its crystal structure. Mineralogical Magazine, 70, 329340.CrossRefGoogle Scholar
Krekel, C. and Polborn, K. (2003) Lime-blue – A mediaeval pigment for wall paintings? Studies in Conservation, 48, 171182.CrossRefGoogle Scholar
Kumar, G.N.H., Parthasarathy, G. and Rao, J.L. (2011) Low-temperature electron paramagnetic resonance studies on natural calumetite from Khetri copper mine, Rajasthan, India. American Mineralogist, 96, 654658.CrossRefGoogle Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452.CrossRefGoogle Scholar
Leoni, M., Gualtieri, A.F. and Roveri, N. (2004) Simultaneous refinement and microstructure of layered materials. Journal of Applied Crystallography, 37, 166173.CrossRefGoogle Scholar
Li, Y. and Zhang, Q.M. (2013) Structure and magnetism of S = ½ kagome antiferromagnets NiCu3(OH)6Cl2 and CoCu3(OH)6Cl2 . Journal of Physics: Condensed Matter, 25, 026003.Google ScholarPubMed
Li, Y., Fu, J.L., Wub, Z.H. and Zhang, Q.M. (2013) Transition-metal distribution in kagome antiferromagnet CoCu3(OH)6Cl2 revealed by resonant X-ray diffraction. Chemical Physics Letters, 570, 3741.CrossRefGoogle Scholar
Lubej, A., Koloini, T. and Pohar, C. (2004) Industrial precipitation of cupric hydroxyl-salts. Acta Chimica Slovenica, 51, 751768.Google Scholar
McQueen, T.M., Han, T.H., Freedman, D.E., Stephens, P. W., Lee, Y.S. and Nocera, D.G. (2011) CdCu3(OH)6Cl2: a new layered hydroxide chloride. Journal of Solid State Chemistry, 184, 33193323.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2007) Cu3MgCl2(OH)6 and the bond-valence parameters of the OH-Cl bond. Acta Crystallographica, B63, 157160.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M.R., Donoso, A.M., Nestola, F., Rossi, M. and Schlüter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
Nilsen, G.J., de Vries, M.A., Stewart, J.R., Harrison, A. and Ronnow, H.M. (2013) Low-energy spin dynamics of the S = ½ kagome system herbertsmithite. Journal of Physics: Condensed Matter, 25, 106001.Google Scholar
Nishio-Hamane, D., Momma, K., Ohnishi, M., Shimobayashi, N., Miyawaki, R., Tomita, N. and Minakawa, T. (2014) Misakiite, IMA 2013-131. CNMNC Newsletter no. 20, June 2014, page 552. Mineralogical Magazine, 78, 549558.Google Scholar
Oswald, H.R. and Feitknecht, W. (1964) Über Hydroxyhalogenide Me2(OH)3Cl, -Br, -J zweiwertiger Metalle (Me = Mg, Ni, Co, Cu, Fe, Mn). Helvetica Chimica Acta, 47, 272289.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Plantinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Schlüter, J. and Malcherek, T. (2007) Haydeeite, Cu3MgCl2(OH)6, a new mineral from the Haydee mine, Salar Grande, Atacama desert, Chile. Neues Jahrbuch für Mineralogie, 184, 3942.CrossRefGoogle Scholar
Syozi, I. (1951) Statistics of the kagome lattice. Progress of Theoretical Physics, 6, 306308.CrossRefGoogle Scholar
Taupin, D. (1973) A powder-diagram automatic-indexing routine. Journal of Applied Crystallography, 6, 380385.CrossRefGoogle Scholar
Wannier, G.H. (1950) Antiferromagnetism – the triangular net. Physical Review, 79, 237364.CrossRefGoogle Scholar
Welch, M.D., Sciberras, M.J., Williams, P.A., Leverett, P., Schlüter, J. and Malcherek, T. (2014) A temperatureinduced reversible transformation between paratacamite and herbertsmithite. Physics and Chemistry of Minerals, 41, 3348.CrossRefGoogle Scholar
Williams, S.A. (1963) Anthonyite and calumetite, two new minerals from Michigan copper district. American Mineralogist, 48, 614619.Google Scholar
Supplementary material: File

Crichton and Müller supplementary material

Calumenite cif

Download Crichton and Müller supplementary material(File)
File 193.5 KB
Supplementary material: File

Crichton and Müller supplementary material

Centennialite cif

Download Crichton and Müller supplementary material(File)
File 314.5 KB