Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T23:55:46.754Z Has data issue: false hasContentIssue false

Cements in radioactive waste disposal: some mineralogical considerations

Published online by Cambridge University Press:  05 July 2018

C. E. McCulloch
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland
M. J. Angus
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland
R. W. Crawford
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland
A. A. Rahman
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland
F. P. Glasser
Affiliation:
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

Abstract

Cementitious matrices are being assessed for immobilization of radioactive wastes. This paper discusses some mineralogical aspects of cement chemistry and the uses of siliceous minerals as selective sorbants to enhance immobilization potential.

Studies of sorption and leaching of caesium from pulverized fuel ash (PFA), blast furnace slag, tobermorite, xonotlite, and clinoptilolite are reported. The role of incorporation of these additives in cement and the effect on the nature of the composite matrix on caesium behaviour has been investigated. Specific mechanisms of the interaction of additives with highly alkaline cement environment are described. While slags, PFA, and clinoptilolite undergo reaction at different rates, tobermorite and xonotlite appear to be stable in cement.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, K., Torstenfelt, B., and Allard, B. (1981) Sorption and diffusion studies of Cs and I in concrete. Technical report, Chalmers, Univ. of Technology, Göteborg, Sweden.Google Scholar
Anderson, K., Torstenfelt, B., and Allard, B. (1982) Proc. Intern. Symp. Environmental migration of long-lived radionuclides (IAEA, Vienna), 111-31.Google Scholar
Dent, L. S., and Taylor, H. F. W. (1956) Acta Crystallogr. 9, 1002.CrossRefGoogle Scholar
Držaj, B., Hočevar, S., Slokan, M., and Zajc, A. (1978) Cem. Concrete Res. 8, 711-20.CrossRefGoogle Scholar
Duncan, A. G., and Brown, S. R. A. (1982) Nuclear Energy, 21, 161-6.Google Scholar
Glasser, F. P., Rahman, A. A., Crawford, R. W., McCulloch, C. E., and Angus, M. J. (1982a) Immobilization and leaching mechanisms of radwaste in cement-based matrices. CEC/DOE report, DOE/RW/82.050.Google Scholar
Glasser, F. P., Rahman, A. A., Crawford, R. W., McCulloch, C. E., and Angus, M. J. (1982b) Ibid. CEC/DOE report, DOE/RW/82.108.Google Scholar
Glasser, F. P., Rahman, A. A., Crawford, R. W., McCulloch, C. E., and Angus, M. J. (1983) Ibid. CEC/DOE report, DOE/RW/83.093.Google Scholar
Hamid, S. A. (1981) Z. Kristallogr. 154, 189.Google Scholar
Hespe, E. D. (1971) Atomic Energy Rev. 9, 195.Google Scholar
IAEA. (1982) Proc. Inter. Symp. Environmental migration of long-lived radionuclides (IAEA, Vienna), 81-203.Google Scholar
Kalousek, G. L., Mitsuda, T., and Taylor, H. F. W. (1977) Cem. Concrete Res. 7, 305.CrossRefGoogle Scholar
Kalousek, G. L. and Roy, R. (1957) J. Am. Ceram. Soc. 40, 74.CrossRefGoogle Scholar
Komarneni, S. and Roy, D. M. (1981) Cem. Concrete Res. 11, 789.CrossRefGoogle Scholar
Komarneni, S. and Roy, R. (1982) Ibid. 12, 773-80.Google Scholar
Kudoh, Y., and Takéuchi, Y. (1979) Min. J. 9, 349.CrossRefGoogle Scholar
Langmuir, D. (1981) Adsorption from aqueous solution (Tewari, P. H., ed.), Plenum Press, New York, 118.Google Scholar
McCulloch, C. E., Crawford, R. W., Angus, M. J., Glasser, F. P., and Rahman, A. A. (1983) Sorption of radiocaesium by active silica. Health Physics, 46, 1095.CrossRefGoogle Scholar
McKinley, I. G. (1980) Rep. Inst. Geol. Sci. ENPU 807.Google Scholar
McKinley, I. G. and West, J. M. (1981) Ibid. ENPU 814.Google Scholar
McKinley, I. G. and West, J. M. (1983) Ibid. FLPU 83-2.Google Scholar
Mamedov, Kh. S., and Belov, N. V. (1955) Dokl. Akad, Nauk. 104, 615.Google Scholar
Mamedov, Kh. S., and Belov, N. V. (1958) Ibid. 123, 163.Google Scholar
Marr, J., and Glasser, F. P. (1983) Effect of silica PFA and slag additives on the composition of cement pore fluids. Proc. 6th Inter. Conf. Alkali Aggregates reactions, Copenhagen.Google Scholar
Matsuzuru, H., Moriyama, N., Wadachi, Y., and Ito, A. (1977) Health Physics, 32, 529.CrossRefGoogle Scholar
Megaw, H. D., and Kelsey, C. H. (1956) Nature, 177, 391.CrossRefGoogle Scholar
Mohan, K., and Taylor, H. F. W. (1981) Proc. Ann. Meeting Mater. Res. Soc., Boston, 54-9.Google Scholar
Rees, J. H. (1983) A discussion of leach test procedures relevant to the evaluation of low and intermediate level waste forms. UKAEA, Harwell report AERE-R10782.Google Scholar
Sand, L. B., and Mumpton, F. A. (1978) Natural zeolites: occurrence, properties, use. (Pergammon Press, New York.)Google Scholar
Wieker, W. (1982) Cem. Concrete Res. 12, 333.CrossRefGoogle Scholar