Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T22:59:14.144Z Has data issue: false hasContentIssue false

Cellular precipitates of iron oxide in olivine in a stratospheric interplanetary dust particle

Published online by Cambridge University Press:  05 July 2018

Frans J. M. Rietmeijer*
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA

Abstract

The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at ∼1100°C during atmospheric entry flash (5–15 s) heating.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanchard, M.B. and Cunningham, G.C. (1974) Artificial mclcor ablation studies: Olivine. J. Geophys. Res.y 79, 3973-90.CrossRefGoogle Scholar
Blanchard, M.B. and Davis, A.S. (1978) Analysis of ablation debris from natural and artificial iron meteorites. J. Geophys:. Res.y 83(B4), 1793–808.CrossRefGoogle Scholar
Bonny, Ph., Balageas, D., Devezeaux, D. and Maurctte, M. (1988) Atmospheric entry of micrometeorites containing organic materials (abstract). Lunar Planet. Sci., 19. 118-9.Google Scholar
Brcarlcy, A.J. (1986) An electron optical study of muscovite breakdown in pclitic xenoliths during pyrometamorphism. Mineral. Mag., 50, 385–97.Google Scholar
Brcarley, A.J. (1987a) A natural example of the disequilibrium breakdown of biotitc at high temperature: TEM observations and comparison with experimental kinetic data. Mineral. Mag., 51, 93106.CrossRefGoogle Scholar
Brcarlcy, A.J. (1987)An experimental and kinetic study of the breakdown of aluminous biotite at 800°C: reaction microstructures and mineral chemistry. Bull. Mineral., 110, 513–32.Google Scholar
Brownlee, D.E., Tomandl, D.A., Hodge, P.W. and Horz, F. (1974) Elemental abundances in interplanetary dust. Nature, 252, 667–9.CrossRefGoogle Scholar
Brownlee, D.E., Blanchard, M.B., Cunningham, G.C., Beauchamp, R.H. and Fruland, R. (1975) Criteria for identification of ablation debris from primitive meteoric bodies. J. Geophys. Res., 80, 4917–24.CrossRefGoogle Scholar
Brownlee, D.E., Joswiak, D.J., Schlutter, D.J., Pepin, R.O., Bradley, J.P. and Love, S.G. (1995) Identification of individual cometary IDP's by thermally stepped He release (abstract). Lunar Planet. ScL, 26, 183–4.Google Scholar
Champness, P.E. (1970) Nucleation and growth of iron oxides in olivine (Mg,Fe)2Si04. Mineral. Mag., 37, 790800.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W. (1975) The quantitative analysis of thin specimens. J. Microscopy, 103, 203–7.CrossRefGoogle Scholar
Cosca, M.A. and Peacor, D.R. (1987) Chemistry and structure of essenite (CaFe3+AlSiO6), a new pyroxene produced by pyrometamorphism. Amer. Mineral, 72, 148–57.Google Scholar
Cosca, M.A., Essene, E.J., Geissman, J.W., Simmons, W.B. and Coates, D.A (1989) Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Amer. Mineral, 74, 85100.Google Scholar
Flynn, G.J. (1994) Changes to the composition and mineralogy of interplanetary dust particles by terrestrial encounters. In Analysis of Interplanetary Dust(M.E. Zolensky, T.L. Wilson, FJ.M. Rietmeijer and GJ. Flynn, eds), pp. 127–44. Amer. Inst. Phys. Conf. Proc. 310. Amer, Inst. Phys. Press, New York,Google Scholar
Flynn, G.J. (1995) Thermal gradients in interplanetary dust particles: The effect of an endothermic phase transition (abstract). Lunar Planet Sci., 26, 405–6.Google Scholar
Foit, F.F. Jr., Hooper, R.L. and Rosenberg, P.E. (1987) An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buehite from Buffalo, Wyoming. Amer. Mineral., 72, 137–47.Google Scholar
Hensen, B.J. and Gray, D.R, (1979) Clinohypersthene and hypersthene from a coal fire buehite near Ravensworth, N.S.W., Australia. Amer. Mineral, 64, 131–5.Google Scholar
Keller, L.P., Thomas, K,L. and McKay, D.S, (1992) Thermal processing of cosmic dust: Atmospheric entry heating and parent body metamorphism (abstract). Lunar Planet. ScL, 23, 675–6.Google Scholar
Kitamura, M., Shen, B., Banno, S. and Morimoto, N. (1984) Fine textures of laihunite, a nonstoichiometric distorted olivine-type mineral. Amer. Mineral, 69, 154-60.Google Scholar
Kondoh, S., Kitamura, M. and Morimoto, N. (1985) Synthetic laihunite (▭xFe2-3xFe2x 3+SiO4), an oxide tion product of olivine. Amer. Mineral., 70, 737746.Google Scholar
Laurance, M.R. and Brownlee, D.E. (1986) The flux of meteoroids and orbital space debris striking satellites in low Earth orbit. Nature, 323, 136–8.CrossRefGoogle Scholar
Love, S.G. and Brownlee, D.E. (1991) Heating and thermal transformation of micrometeoroids entering the Earth's atmosphere. Icarus, 89, 2643.CrossRefGoogle Scholar
Love, S.G. and Brownlee, D.E. (1994) Peak atmospheric entry temperatures of micrometeorites. Meteoritics, 29, 69 -70.CrossRefGoogle Scholar
Mackwell, S.J. (1992) Oxidation kinetics of fayalite (Fe2Si04). Phys. Chem. Minerals, 19, 222–8.CrossRefGoogle Scholar
Moseley, D. (1984) Symplectic exsolution in olivine. Amer. Mineral, 69, 139–53.Google Scholar
Muan, A. and Osborn, E.F. (1956) Phase equilibria at liquidus temperatures in the system MgO-FeO- Fe2O3-SiO2. J. Amer. Ceram. Soc., 39, 121–40.CrossRefGoogle Scholar
Nagahara, H., Kushiro, I. and Mysen, B.O. (1991) The system Mg2Si04-Fe2SiO4 at low pressure. In Ann. Rpt. Dir. Carnegie Inst. Wash, 1990-1991 pp. 8B–92. Carnegie Inst. Washington.Google Scholar
Rietmeijer, F.J.M. (1992a) Endothermic reactions constrain dynamic pyrometamorphic temperatures in two iron-rich interplanetary dust particles (abstract). Lunar Planet. ScL, 23, 1151–2.Google Scholar
Rietmeijer, F.J.M. (1992b) Pregraphitic and poorly graphitised carbons in porous chondritic micrometeorites. Geochim. Cosmochim. Acta, 56, 1665–71.CrossRefGoogle Scholar
Rietmeijer, F.J.M. (1993) Micrometeorite dynamic pyrometamorphism: Observation of a thermal gradient in iron-nickel sulfide (abstract). Lunar Planet Sci.r24, 1201–2.Google Scholar
Rietmeijer, F.J.M. (1996) The ultrafine mineralogy of a molten interplanetary dust particle as an example of the quench regime of atmospheric entry heating. Mefeorifics Sci., 31, 237–42.Google Scholar
Rietmeijer, F.J.M. and Blanford, G.E. (1988) Capture of an olivine miciometeoroid by spacecraft in low- Earth orbit. J. Geophys. Res., 93(B10), 11,943–8.Google Scholar
Rietmeijer, F.J.M., Schramm, L.S., Barrett, R.A., McKay, D.S. and Zook, H.A. (1986) The main electronics box thermal blanket of the Solar Maximum satellite as an inadvertent capture cell for orbital debris and micrometeors. Adv. Space Sci., 6, 145–9.CrossRefGoogle Scholar
Zolensky, M.E., Horzt, F., See, T., Bernhard, R., Dardano, C., Barrett, R.A., Mack, K., and Warren, J. (1994) Meteoroid investigations using the Long Duration Exposure Facility. In Analysis of Interplanetary Dust(Zolensky, M.E., Wilson, T.L., F.J.M., Rietmeijer and Flynn, G.J., eds.), pp. 291304. Amer. Inst. Phys. Conf. Proc. 310. Amer. Inst. Phys. Press, New York.Google Scholar