Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T04:35:12.022Z Has data issue: false hasContentIssue false

Caryinite revisited

Published online by Cambridge University Press:  05 July 2018

T. Scott Ercit*
Affiliation:
Mineral Sciences Section, Canadian Museum of Nature, Ottawa, Ontario, Canada K1P 6P4

Abstract

Caryinite from Långban, Sweden is associated with barite, richterite, manganberzeliite, hedyphane, sarkinite or eveite, and an exsolved fermorite-like mineral. The crystal structure of caryinite, space group I2/a, a 6.855(2), b 13.147(3), c 11.479 (4) Å, β 98.97°, V 1022.0(5) Å3, has been refined to a conventional R = 3.5% using 1295 observed [F > 3α(F)] reflections. Caryinite is isostructural with alluaudite and shows the following key features: (1) Pb is ordered at X2, Mg is ordered at M2, Mn is disordered over M1 and M2, Ca is disordered over M1 and X1 and Na is disordered over X1 and X2, and (2) the X1 and 02 atoms of the X1 polyhedron show positional disorder. With the above site preferences taken into consideration, the assignment rules of Moore and Ito (1979) can now be used to accurately predict site occupancies for caryinites and arseniopleites using chemical data only. On the basis of the general structural formula X2X1M1M22[AsO4]3 (Z = 4), caryinite is (Na, Pb) (Ca, Na) Ca (Mn, Mg)2 [ASO4]3; the analogous formula for arseniopleite is Na(Ca,Na)Mn(Mn,Mg)2[AsO4]3. Carinite has Ca dominant at M1; by analogy, arseniopleite should have Mn dominant at M1.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boström, K. (1957) The chemical composition and symmetry of caryinite. Arkiv Mineral. Geol., 4, 333–6.Google Scholar
Brown, I. D. (1981) The bond-valence method: an empirical approach to chemical structure and bond-ing. In Structure and Bonding in Crystals H (M. O'Keeffe and A. Navrotsky, eds.). Academic Press, New York.Google Scholar
Cromer, D. T. and Liberman, D. (1970) Relativistic calculation of anomalous scattering factors for X-rays. J. Chem. Phys., 53, 1891–8.Google Scholar
Cromer, D. T. and Mann, J. B. (1968) X-ray scattering factors computed from numerical Hartree-Fock wave func-tions. Acta Cryst., A24, 321-4.Google Scholar
Dollase, W. A. and Newman, W. I. (1984) Statistically most probable stoichiometric formulae. Amer. Mineral., 69, 553–6.Google Scholar
Dunn, P. J. and Peacor, D. R. (1987) New data on the relation between caryinite and arseniopleite. Mineral. Mag., 51, 281–4.Google Scholar
Ercit, T. S., Hawthorne, F. C., and Cerny, P. (1986) The crystal structure of bobfergusonite. Can. Mineral., 24, 605–14.Google Scholar
Keller, P., Riffel, H., Zettler, F., and Hess, H. (1981) AgCo3H2(AsO4)3 und AgZn3H2(AsO4)3. Darstel-lung und Kristallstruktur. Ein weiterer neuer Arse-nat-Struktur-typ. Zeits. Anorg. Allg. Chem., 474, 123–34.Google Scholar
Keller, P., and Hess, H. (1988) Die Kristallstrukturen von O'Danielit, Na(Zn, Mg)3H2(AsO4)3, un Johillerit, Na(Mg, Zn)3Cu(AsO4)3. NeuesJahrb. Mineral. Mh., 395-404.Google Scholar
Lundström, C. H. (1874) Koryinit från Långbanshyttan i Vermland. Geolog. Fören. Förh. i Stokholm, 2, 178, 223.Google Scholar
Moore, P. B. (1971) Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatite phosphate giant crystals. Amer. Mineral., 56, 1955–75.Google Scholar
Moore, P. B. and Ito, J. (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineral. Mag., 43, 227–35.Google Scholar
Moore, P. B. and Molin-Case, J. (1974) Contribution to pegmatire phosphate giant crystal paragenesis. II. The crystal chemistry of wyllieite, Na2Fe2+ 2Al[PO4]3, a primary phase. Amer. Mineral., 59, 280–90.Google Scholar