Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T01:23:38.393Z Has data issue: false hasContentIssue false

Carlosbarbosaite, ideally (UO2)2Nb2O6(OH)2·2H2O, a new hydrated uranyl niobate mineral with tunnels from Jaguaraçu, Minas Gerais, Brazil: description and crystal structure

Published online by Cambridge University Press:  05 July 2018

D. Atencio*
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil
A. C. Roberts
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
M. A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
L. A. D. Menezes Filho
Affiliation:
Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
J. M. V. Coutinho
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil
J. A. R. Stirling
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
K. E. Venance
Affiliation:
Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
N. A. Ball
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
E. Moffatt
Affiliation:
Canadian Conservation Institute, 1030 Innes Road, Ottawa, Ontario K1A 0M5, Canada
M. L. S. C. Chaves
Affiliation:
Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
P. R. G. Brandão
Affiliation:
Departamento de Engenharia de Minas, Escola de Engenharia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
A. W. Romano
Affiliation:
Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
*

Abstract

Carlosbarbosaite, ideally (UO2)2Nb2O6(OH)2·2H2O, is a new mineral which occurs as a late cavity filling in albite in the Jaguaraçu pegmatite, Jaguaraçu municipality, Minas Gerais, Brazil. The name honours Carlos do Prado Barbosa (1917–2003). Carlosbarbosaite forms long flattened lath-like crystals with a very simple orthorhombic morphology. The crystals are elongated along [001] and flattened on (100); they are up to 120 μm long and 2–5 μm thick. The colour is cream to pale yellow, the streak yellowish white and the lustre vitreous. The mineral is transparent (as individual crystals) to translucent (massive). It is not fluorescent under either long-wave or short-wave ultraviolet radiation. Carlosbarbosaite is biaxial(+) with α = 1.760(5), β = 1.775(5), γ = 1.795(5), 2Vmeas. = 70(1)º, 2Vcalc. = 83º. The orientation is X || a, Y || b, Z || c. Pleochroism is weak, in yellowish green shades, which are most intense in the Z direction. Two samples were analysed. For sample 1, the composition is: UO3 54.52, CaO 2.07, Ce2O3 0.33, Nd2O3 0.49, Nb2O5 14.11, Ta2O5 15.25, TiO2 2.20, SiO2 2.14, Fe2O3 1.08, Al2O3 0.73, H2O (calc.) 11.49, total 104.41 wt.%; the empirical formula is (□0.68Ca0.28Nd0.02Ce0.02)Σ=1.00[U1.440.56O2.88(H2O)1.12](Nb0.80Ta0.52Si0.27Ti0.21Al0.11Fe0.10)Σ=2.01 O4.72(OH)3.20(H2O)2.08. For sample 2, the composition is: UO3 41.83, CaO 2.10, Ce2O3 0.31, Nd2O3 1.12, Nb2 O5 14.64, Ta2O5 16.34, TiO2 0.95, SiO2 3.55, Fe2O3 0.89, Al2O3 0.71, H2O (calc.) 14.99, total 97.43 wt.%; the empirical formula is (□0.67Ca0.27Nd0.05Ce0.01)Σ=1.00[U1.040.96O2.08(H2O)1.92] (Nb0.79Ta0.53Si0.42Ti0.08Al0.10Fe0.08)Σ=2.00O4.00(OH)3.96(H2O)2.04. The ideal endmember formula is (UO2)2Nb2O6(OH)2·2H2O. Calculated densities are 4.713 g cm-3 (sample 1) and 4.172 g cm-3 (sample 2). Infrared spectra show that both (OH) and H2O are present. The strongest eight X-ray powder-diffraction lines [listed as d in Å (I)(hkl)] are: 8.405(8)(110), 7.081(10)(200), 4.201(9)(220), 3.333(6)(202), 3.053(8)(022), 2.931(7)(420), 2.803(6)(222) and 2.589(5)(040,402). The crystal structure was solved using single-crystal X-ray diffraction (R = 0.037) which gave the following data: orthorhombic, Cmcm, a = 14.150(6), b = 10.395(4), c = 7.529(3) Å, V = 1107(1) Å3, Z = 4. The crystal structure contains a single U site with an appreciable deficiency in electron scattering, which is populated by U atoms and vacancies. The U site is surrounded by seven O atoms in a pentagonal bipyramidal arrangement. The Nb site is coordinated by four O atoms and two OH groups in an octahedral arrangement. The half-occupied tunnel Ca site is coordinated by four O atoms and four H2O groups. Octahedrally coordinated Nb polyhedra share edges and corners to form Nb2O6(OH)2 double chains, and edge-sharing pentagonal bipyramidal U polyhedra form UO5 chains. The Nb2O6(OH)2 and UO5 chains share edges to form an open U—Nb—φ framework with tunnels along [001] that contain Ca(H2O)4 clusters. Carlosbarbosaite is closely related to a family of synthetic U–Nb–ϕ framework tunnel structures, it differs in that is has an (OH)-bearing framework and Ca(H2O)4 tunnel occupant. The structure of carlosbarbosaite resembles that of holfertite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd El-Naby, H.H. (2008) Genesis of secondary uranium minerals associated with jasperoid veins, El Rerdiya area, Eastern Desert, Egypt. Mineralium Deposita, 41, 933944.CrossRefGoogle Scholar
Arcidiácono, E.C. and Bedlivy, D. (1976) Datos preliminares sobre el hallazgo de un nuevo mineral de uranio, en Tanti (Prov. de Cordoba R. Argentina). Revista de la Asociación Geológica Argentina, 31, 232234.Google Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R., Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Belakovskiy, D.I., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Mokhov, A.V. (2006) Holfertite, a new hydroxyl-hydrated uranium titanate from Starvation Canyon, Thomas Range, Utah. Mineralogical Record, 37, 311317.Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedral geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Cassedanne, J.P. and Alves, J.N. (1994) The Jaguaraçu pegmatite, Minas Gerais, Brazil. Mineralogical Record, 25, 165170.Google Scholar
Edge, R.A. and Taylor, H.F. (1971) Crystal structure of thaumasite, [Ca3Si(OH)6·12H2O](SO4)(CO3). Acta Crystallographica, B27, 594601.CrossRefGoogle Scholar
Foord, E.E., Gaines, R.V., Crock, J.G., Simmons, W.B., Jr. and Barbosa, C.P. (1986) Minasgeraisite, a new member of the gadolinite group from Minas Gerais, Brazil. American Mineralogist, 71, 603607.Google Scholar
Gasperin, M. (1986) (Cs.75K.25)(Nb,Ti)U2O11: Un niobotitanouranate alcalin de type structural nouveau. Acta Crystallographica, C42, 136138.Google Scholar
Gasperin, M. (1987) Synthese et structure de trois niobouranates d’ions monovalents: TlNb2U2O11.5, KNbUO6, et RbNbUO6. Journal of Solid State Chemistry, 67, 219224.CrossRefGoogle Scholar
Mandarino, J.A. (1979) The Gladstone-Dale relationship: part II Some I. general applications. The Canadian Mineralogist, 17, 7176.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part I The V. ompatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mandarino, J.A. (1989) The Gladstone-Dale compatibility of some new mineral proposals considered by the Commission on New Minerals and Mineral I.M.A. Names (1983-1987). European Journal of Mineralogy, 1, 123125.CrossRefGoogle Scholar
Moore, P.B., Barbosa, C.P. and Gaines, R.V. (1978) Bahianite, Sb3Al5O14(OH)2, a new species. Mineralogical Magazine 42, 179182.CrossRefGoogle Scholar
Nomura, S.F., Atencio, D., Chukanov, N.V., Rastsvetaeva, R.K., Coutinho, J.M.V. and Karipidis, T. (2010) Manganoeudialyte, a new mineral from Poços de Caldas, Minas Gerais, Brazil. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 139, 3547.Google Scholar
O’Keeffe, M. and Hyde, B.G. (1981). The role of nonbonded forces in crystals. Pp. 227254. in: Structure and Bonding in Crystals (O, M.’Keeffe and Navrotsky, A., editors). Wiley, New York.Google Scholar
Sheldrick, G.M. (1997) SHELX-97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, Wisconsin, USAGoogle Scholar
Sheldrick, G.M. (1998) SADABS User Guide. University of Göttingen, Göttingen, Germany.Google Scholar
Sokolova, E., Hawthorne, F.C., Belakovskiy, D.I. and Pautov, L.A. (2005) The OD (Order-Disorder) structure of holferti te, [U6+ 1.75Ti4+O(OH)] [(H2O)3(Ca0.25], a new mineral from Searle Canyon, Thomas Range, Utah, USA. The Canadian Mineralogist, 43, 15451552.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Surblé, S., Obbade, S., Saad, S., Yagoubi, S., Dion, C. and Abraham, F. (2006) The A(1-x) U Nb O(6-x/2) compounds (x = 0, A = Li, Na, Cs and x = 0.5, A = Rb, Cs): from layered to tunneled structure. Journal of Solid State Chemistry, 179, 32383251.CrossRefGoogle Scholar