Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-02T19:35:01.153Z Has data issue: false hasContentIssue false

Carbon incorporation in plumbogummite-group minerals

Published online by Cambridge University Press:  05 July 2018

I. E. Grey*
Affiliation:
CSIRO Process Science and Technology, Box 312, Clayton South, Victoria, 3169, Australia
F. L. Shanks
Affiliation:
School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
N. C. Wilson
Affiliation:
CSIRO Process Science and Technology, Box 312, Clayton South, Victoria, 3169, Australia
W. G. Mumme
Affiliation:
CSIRO Process Science and Technology, Box 312, Clayton South, Victoria, 3169, Australia
W. D. Birch
Affiliation:
Geosciences Section, Museum Victoria, GPO Box 666, Melbourne, Victoria, 3001, Australia
*

Abstract

Non-stoichiometric, carbon-containing crandallite from Guatemala and plumbogummite from Cumbria have been characterized using electron microprobe (EMPA) and wet-chemical analyses, Rietveld analysis of powder X-ray diffraction (PXRD) patterns, and infrared (IR), Raman and cathodoluminescence (CL) spectroscopies. The samples contain 11.0 and 4.8 wt.% CO2, respectively. The IR spectra for both samples show a doublet in the range 1410–1470 cm–1, corresponding to CO3 vibrations. Direct confirmation of CO3 replacing PO4 was obtained from difference Fourier maps in the Rietveld analysis. Carbonate accounts for 67% of the C in the plumbogummite and 20% of the C in the Guatemalan crandallite, the remainder being present as nano-scale organic carbon. The CO3 substitution for PO4 is manifested in a large contraction of the tetrahedral volume (14–19%) and by a contraction of the a axis, analogous to observations for carbonate-containing fluorapatites. Stoichiometric crandallite from Utah was characterized using the same methods, for comparison with the non-stoichiometric, carbon-bearing phases.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, J.R., Hill, P.G., Von Knorring, O. and Oliver, G.J.H. (2000) Exotic aluminium phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite from rare-element pegmatites in Namibia. Mineralogical Magazine, 64, 11471164.Google Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. Pp. 3152 in: Structure and Bonding in Crystals II (O’Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.CrossRefGoogle Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Blanchard, F.N. (1972) Physical and chemical data for crandallite from Alachua county, Florida. American Mineralogist, 57, 473484.Google Scholar
Blount, A.M. (1974) The crystal structure of crandallite. American Mineralogist, 59, 4147.Google Scholar
Breitinger, D.K., Brehm, G., Mohr, J., Colognesi, D., Parker, S.F., Stolle, A., Pimpl, Th.H. and Schwab, R.G. (2006) Vibrational spectra of synthetic crandallite-type minerals – optical and inelastic neutron scattering spectra. Journal of Raman Spectroscopy, 37, 208216.CrossRefGoogle Scholar
Budaeva, A.D., Zoltoev, E.V., Tikhova, V.D. and Bodoev, N.V. (2006) Interaction of heavy metal ions with ammonium humates. Russian Journal of Applied Chemistry, 79, 920923.CrossRefGoogle Scholar
Comodi, P. and Liu, Y. (2000) CO3 substitution in apatite: further insight from new crystal-chemical data of Kasekere (Uganda) apatite. European Journal of Mineralogy, 12, 965974.CrossRefGoogle Scholar
Cowgill, U.M., Hutchinson, G.E. and Joensuu, O. (1963) An apparently triclinic dimorph of crandallite from a tropical swamp sediment in El Peten, Guatemala. American Mineralogist, 48, 11441153.Google Scholar
Drouet, C., Pass, K.L., Baron, D., Draucker, S. and Navrotsky, A. (2004) Thermochemistry of jarositealunite and natrojarosite-natroalunite solid solutions. Geochimica et Cosmochimica Acta, 60, 21972205.CrossRefGoogle Scholar
Dzikowski, T.J., Groat, L.A. and Jambor, J.L. (2006) The symmetry and crystal structure of gorceixite, BaAl3[PO3(O,OH)]2(OH)6, a member of the alunite supergroup. The Canadian Mineralogist, 44, 951958.CrossRefGoogle Scholar
Elliott, J.C. (2002) Calcium phosphate biominerals. Pp. 427453 in : Phosphates: Geochemical, Geobiological and Materials Importance (Kohn, M.J. Rakovan, J. and Hughes, J.M, editors). Reviews in Mineralogy, 48, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Förtsch, E.B. (1967) ‘Plumbogummite’ from Roughten Gill, Cumberland. Mineralogical Magazine, 36, 530538.CrossRefGoogle Scholar
Hartley, E.G.J. (1900) On the constitution of the natural arsenates and phosphates. Part III. Plumbogummite and hitchcockite. Mineralogical Magazine, 57, 223234.CrossRefGoogle Scholar
Hu, A., Alkhesho, I. And Duley, W.W. (2006) Highresolution spectra of carbon nanoparticles: Laboratory simulation of the infrared emission features associated with polycyclic aromatic hydrocarbons. The Astrophysical Journal, 653, L157–L160.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp. 123–253 in : Phosphates: Geochemical, Geobiological and Materials Importance (Kohn, M.J. Rakovan, J. and Hughes, J.M, editors). Reviews in Mineralogy, 48, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Ivanova, T.I., Frank-Kamenetskaya, O.V., Kol’tsov, A.B. and Ugolkov, V.L. (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. Journal of Solid State Chemistry, 160, 340349.CrossRefGoogle Scholar
Jambor, J.L. (1999) Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37, 13231341.Google Scholar
Jones, J.B. (1968) Al-O and Si-O tetrahedral distances in aluminosilicate framework structures. Acta Crystallographica, B24, 355.CrossRefGoogle Scholar
Kato, T. (1987) Further refinement of the goyazite structure. Mineralogical Magazine, 13, 390396.CrossRefGoogle Scholar
Kato, T. (1990) The crystal structure of florencite. Neues Jahrbuch füer Mineralogie Monatshefte, 227–231.Google Scholar
Knudsen, A.C. and Gunter, M.E. (2002) Sedimentary phosphorites – an example: Phosphoria formation, southeastern Idaho, U.S.A. Pp. 363–389 in: Phosphates: Geochemical, Geobiological and Materials Importance (Kohn, M.J. Rakovan, J. and Hughes, J.M, editors). Reviews in Mineralogy, 48, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Kolitsch, U., Tiekink, E.R.T., Slade, P.G., Taylor, M.R. and Pring, A. (1999) Hinsdalite and plumbogummite, their atomic arrangements and disordered lead sites. European Journal of Mineralogy, 11, 513520.CrossRefGoogle Scholar
Lehr, J.R., McClellan, G.H., Smith, J.P. and Frasier, A.W. (1968) Characterization of apatites. in commercial phosphate rocks. Pp. 29–44 in: Coll. Int. Phosphates Minéraux Solides, Toulouse, 1967, Vol. 2, Paris.Google Scholar
McClellan, G.H. (1980) Mineralogy of carbonate fluorapatites. Journal of the Geological Society, London, 137, 675681.CrossRefGoogle Scholar
McConnell, D. (1938) A structural investigation of the isomorphism of the apatite group. American Mineralogist, 23, 119.Google Scholar
Mills, S.J., Kampf, A.R., Raudsepp, M. and Christy, A.G. (2009) The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. Mineralogical Magazine, 73, 837845.CrossRefGoogle Scholar
Perdikatsis, B. (1991) X-ray powder diffraction study of francolite by the Rietveld method. Materials Science Forum, 79-82, 809814.CrossRefGoogle Scholar
Pouchou, J.-L. (1993) X-ray microanalysis of stratified specimens. Analytica Chimica Acta, 283, 8197.CrossRefGoogle Scholar
Raade, G., Rømming, C. and Medenbach, O. (1998) Carbonate-substituted phosphoellenbergerite from Modum, Norway: description and crystal structure. Mineralogy and Petrology, 62, 89101.CrossRefGoogle Scholar
Regnier, P., Lasaga, A.C., Berner, R.A., Han, O.H. and Zilm, K.W. (1994) Mechanism of CO3 2– substitution in carbonate-fluorapatite: Evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations. American Mineralogist, 79, 809818.Google Scholar
Ripmeester, J.A., Ratcliffe, C.I., Dutrizac, J.E. and Jambor, J.L. (1986) Hydronium ion in the alunitejarosite group. The Canadian Mineralogist, 24, 435447.Google Scholar
Rodriguez-Carvajal, J. (1990) FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. Satellite meeting on powder diffraction of the XV Congress of the IUCr, Toulouse, France.Google Scholar
Shur, J.W., Shin, T.I., Lee, S.M., Baek, S.W. and Yoon, D.H. (2003) Photoluminescence properties of Nd: LiNbO3 co-doped with ZnO fiber single crystals grown by micro-pulling-down method. Materials Science and Engineering, B105, 16–19.CrossRefGoogle Scholar
Van Wambeke, L. (1971) The problem of cation deficiencies in some phosphates due to alteration processes. American Mineralogist, 56, 13661384.Google Scholar
Vaughey, J.T., Harrison, W.T.A., Dussack, L.L and Jacobson, A.J. (1994) A new layered vanadium selenium oxide with a structure related to hexagonal tungsten oxide: NH4(VO2)3(SeO3)2 . Inorganic Chemistry, 33, 43704375.CrossRefGoogle Scholar
Vieillard, P. and Tardy, Y. (1979) Stability fields of clays and aluminium phosphates: parageneses in lateritic weathering of argillaceous phosphatic sediments. American Mineralogist, 64, 626634.Google Scholar
Wilson, R.M., Elliott, J.C. and Dowker, S.E.P. (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. American Mineralogist, 84, 14061414.Google Scholar
Wilson, R.M., Dowker, S.E.P. and Elliott, J.C. (2006) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials, 27, 46824692.CrossRefGoogle ScholarPubMed
Wright, K., Freer, R. and Catlow, C.R.A. (1994) The energetics and structure of the hydrogarnet defect in grossular: A computer simulation study. Physics and Chemistry of Minerals, 20, 500503.Google Scholar
Yeomans, J.C. and Bremner, J.M. (1991) Carbon and nitrogen analysis of soils by automated combustion techniques. Communications in Soil Science and Plant Analysis, 22, 843850.CrossRefGoogle Scholar
Zemann, J. (1981) Zur stereochemie der carbonate. Fortschritte der Mineralogie, 59, 95116.Google Scholar