Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:59:21.058Z Has data issue: false hasContentIssue false

Can Ti4+ replace Si4+ in silicates?

Published online by Cambridge University Press:  05 July 2018

P. Hartman*
Affiliation:
Geologisch en Mineralogisch Instituut der Rijksuniversiteit, Garenmarkt 1B, Leiden, Netherlands

Summary

It is argued on crystal-chemical grounds that Si deficiency is compensated by the entering of Al, Fe3+, or Ti4+, in this order of preference, into tetrahedral sites. It is pointed out that Ti4+ occurs in tetrahedral coordination in exceptional circumstances only, while Fe3+ relatively easily takes a tetrahedral coordination.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agranovskaya, (A. I.) and Saksonov, (Yu. G.) , 1966. Soviet Phys. Cryst. 11, 196.Google Scholar
Andersson, (S.) and Wadsley, (A. D.), 1961. Acta Chem. Scand. 15, 663.CrossRefGoogle Scholar
Bland, (J. A.), 1961. Acta Cryst. 14, 875.10.1107/S0365110X61002527CrossRefGoogle Scholar
Blasse, (G.), 1963a. Journ. inorg, nucl. chem. 25, 230.CrossRefGoogle Scholar
Blasse, (G.), 1963b. Ibid. 743,Google Scholar
Blasse, (G.), 1964a. Ibid. 26, J473.Google Scholar
Blasse, (G.), 1964b. Philips Res. Rep. 19, suppl. 3.Google Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1962, 1963. Rock-forming Minerals, vols. 1, 2, and 3. London (Longmans, Green).Google Scholar
Donnay, (G.), Morimoto, (N.), Takeda, (H.), and Donnav, (J. D. H.), 1964. Acta Cryst. 11, 1369.10.1107/S0365110X64003450CrossRefGoogle Scholar
Espinosa, (G. P.), 1964. lnorg. Chem. 3, 848.10.1021/ic50016a014CrossRefGoogle Scholar
Faost, (G. T.), 1936. Amer. Min. 21, 735.Google Scholar
Forster, (R. H.) and Hall, (E. O.), 1965. Acta Cryst. 18, 857.10.1107/S0365110X65002104CrossRefGoogle Scholar
Geller, (S.), Sherwood, (R. C.), Espinosa, (G. P.), and Williams, (H. J.), 1965. Journ. appl. Phys. 36, 321.Google Scholar
Geller, (S.) 1967. Zeits. Krist. 125, 1.10.1524/zkri.1967.125.125.1CrossRefGoogle Scholar
Gorter, (E. W.), 1954. Philips Res. Rep. 9, 403.Google Scholar
Hardy, (A.), Lecerf, (A.), Rault, (M.), and Villers, (G.), 1964. Compt. Rend. Acad. Sci. Paris, 259, 3462.Google Scholar
Howie, (R. A.) and Woolley, (A. R.), 1968. Min. Mag. 36, 775.Google Scholar
Moore, (P. B.) and Louisnathan, (J.), 1967. Science, 156, 1361.CrossRefGoogle Scholar
Mvmme, (W. G.) and Wadsley, (A. D.), 1968. Acta Cryst. 1324, 1327.Google Scholar
Ruddlesdzn, (S. N.) and Povper, (P.), 1957. Ibid. 10, 538.Google Scholar
Steadman, (R.) and Nuttall, (P. M.), 1964. Ibid. 16, 1.10.1107/S0365110X63000013CrossRefGoogle Scholar
Structure Reports, 1964, 21, 294.CrossRefGoogle Scholar
Tarte, (P.), 1961. Nature, 191, 1002.10.1038/1911002a0CrossRefGoogle Scholar
Wones, (D. R.), 1958. Carnegie lnst. Washington, Ann. Rep. Dir. Geophys. Lab., 1957-1958, 195.Google Scholar
Wones, (D. R.) and Appleman, (D. E.), 1961. U.S. Geol. Survey Prof Paper 424-C, 309.Google Scholar