Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T23:01:44.700Z Has data issue: false hasContentIssue false

Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. I. A new Ti-silicate mineral from the Verkhnee Espe Deposit, Akjailyautas Mountains, Kazakhstan

Published online by Cambridge University Press:  05 July 2018

E. Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow 119017, Russia
Y. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
A. V. Stepanov
Affiliation:
Satpaev Institute of Geological Sciences, ul. Kabanbai batyr, 69, Almaty 050010, Kazakhstan
G. K. Bekenova
Affiliation:
Satpaev Institute of Geological Sciences, ul. Kabanbai batyr, 69, Almaty 050010, Kazakhstan
P. E. Kotel’nikov
Affiliation:
Satpaev Institute of Geological Sciences, ul. Kabanbai batyr, 69, Almaty 050010, Kazakhstan
*

Abstract

Cámaraite, ideally Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7, is a new mineral from the Verkhnee Espe deposit, Akjailyautas Mountains, Kazakhstan. It occurs as intergrowths with bafertisite and jinshajiangite in separate platy crystals up to 8 mm × 15 mm × 2 mm in size, or as star-shaped aggregates of crystals with different orientations. Individual crystals are orange-red to brownish-red, and are platy on {001}. Cámaraite is translucent and has a pale-yellow streak, a vitreous lustre, and does not fluoresce under cathode or ultraviolet light. Cleavage is {001} perfect, no parting was observed, and Mohs hardness is <5; the mineral is brittle. The calculated density is 4.018 g cm-3. In transmitted light, camaraite is strongly pleochroic, X = light brown, Y = reddish-brown, Z = yellow- brown, with Z < X < Y. Cámaraite is biaxial +ve and 2Vmeas. = 93(1)°. All refractive indices are greater than 1.80. Cámaraite is triclinic, space group C, a = 10.678(4) Å, b = 13.744(8) Å, c = 21.40(2) Å, α = 99.28(8)°, β = 92.38(5)°, γ = 90.00(6)°, V = 3096(3) Å3, Z = 4, a:b:c = 0.7761:1:1.5565. The seven strongest lines in the X-ray powder-diffraction pattern are as follows: [d (Å), (I), (hkl)]: 2.63, (100), (401); 2.79, (90), (3, 41, 26, 225); 1.721, (70), (11, 49, 02); 3.39, (50), (24, 223); 3.18, (50), (5, 24); 2.101, (50), (2, 40); 1.578, (50), (1, 2, 61, 40). Chemical analysis by electron microprobe gave: Nb2O5 1.57, SiO2 25.25, TiO2 15.69, ZrO2 0.33, Al2O3 0.13, Fe2O3 2.77, FeO 16.54, MnO 9.46, ZnO 0.12, MgO 0.21, CaO 0.56, BaO 21.11, Na2O 1.41, K2O 0.84, H2O 1.84, F 3.11, less O:F 1.31, total 99.63 wt.%, where the valence state of Fe was determined by Mössbauer spectroscopy [Fe3+/(Fe2+ + Fe3+) = 0.13(8)] and the H2O content was derived by crystal-structure determination. The resulting empirical formula on the basis of 39 anions is Ca0.05)Σ7.78Si7.97O35.89H3.88F3.11. Cámaraite is a Group-II TS-block mineral in the structure hierarchy of Sokolova (2006). The mineral is named camaraite after Fernando Cámaraite (born 1967) of Melilla, Spain, in recognition of his contribution to the fields of mineralogy and crystallography. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, International Mineralogical Association (IMA 2009-11).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy. Vol. II. Silica, Silicates. Mineral Data Publishing, Tucson, Arizona.Google Scholar
Cámaraite, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI. Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group-III Ti-disilicate mineral. Mineralogical Magazine, 71, 593—610.Google Scholar
Chao, G.Y. (1991) Perraultite, a new hydrous Na-K-Ba- Mn-Ti-Nb silicate species from Mont Saint-Hilaire, Quebec. The Canadian Mineralogist, 29, 355—358.Google Scholar
Guan, Ya.S., Simonov, V.I. and Belov, N.V. (1963) Crystal structure of bafertisite, BaFe2TiO [Si2O7](OH)2. Doklady Akademii Nauk SSSR, 149, 123126.Google Scholar
Hong, W. and Fu, P. (1982) Jinshajiangite, a new Ba- Mn-Fe-Ti-bearing silicate mineral. Geochemistry (China), 1, 458—464.Google Scholar
Pekov, I.V., Belovitskaya, Yu.V., Kartashov, P.M., Chukanov, N.V., Yamnova, N.A. and Egorov- Tismenko, Yu.K. (1999) The new data on perraultite (The Azov sea region). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 128(3), 112—120. (in Russian).Google Scholar
Peng, C. (1959) The discovery of several new minerals of rare elements. Ti-chih K-o-hsueh, 10, 289. (in Chinese).Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” j(pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rastvetaeva, R.K., Tamazyan, R.A., Sokolova, E.V. and Belakovskii, D.I. (1991) Crystal structures of two modifications of natural Ba,Mn-titanosilicate. Soviet Physics Crystallography, 36, 186—189.Google Scholar
Rastvetaeva, R.K., Eskova, E.M., Dusmatov, V.D., Chukanov, N.V. and Schneider, F. (2008) Surkhobite: revalidation and redefinition with the new formula, (Ba,K)2CaNa(Mn,Fe2+,Fe3+)8Ti4 (Si2O7)4O4(F,OH,O)6. European Journal of Mineralogy, 20, 289—295.Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 1273—1330.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V. Titanium silicates: the crystal chemistry of nacareniobsite- (Ce). The Canadian Mineralogist, 46, 1493—1502.Google Scholar
Sokolova, E., Cámaraite, F., Hawthorne, F.C. and Abdu, Y. (2009) From structure topology to chemical composition. VII. Titanium silicates: the crystal structure and crystal chemistry of jinshajiangite. European Journal of Mineralogy, 21, 871—883.CrossRefGoogle Scholar
Stepanov, A.V. and Bekenova, G.K. (2009) Brief description of the Verkhnee Espe rare-element deposit. International Conference Satpaev's Lecturing: Geology, minerageny and future trends of mineral resources development. Proceedings, Almaty, 248—258.Google Scholar
Vrana, S., Rieder, M. and Gunter, M.E. (1992) Hejtmanite, a manganese-dominant analogue of bafertisite, a new mineral. European Journal of Mineralogy, 4, 35—43.CrossRefGoogle Scholar
Yakovlevskaya, T.A. and Mineev, D.A. (1965) On the crystals and optic orientation of bafertisite. Proceedings of the Fersman Mineralogical Museum, 16, 293—294. (in Russian).Google Scholar
Yamnova, N.A., Egorov-Tismenko, Yu.K. and Pekov, I.V. (1998) Crystal structure of perraultite from the coastal region of the Sea of Azov. Crystallography Reports, 43, 401—410.Google Scholar