Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T07:01:44.796Z Has data issue: false hasContentIssue false

Calciolangbeinite-O, a natural orthorhombic modification of K2Ca2(SO4)3, and the langbeinite–calciolangbeinite solid-solution system

Published online by Cambridge University Press:  28 January 2022

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Irina O. Galuskina
Affiliation:
Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Joachim Kusz
Affiliation:
Faculty of Science and Technology, University of Silesia, ul. 75. Pułku Piechoty 1, 41-500 Chorzów, Poland
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Evgeny V. Galuskin
Affiliation:
Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Maria O. Bulakh
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Oblast, Russia
Sergey N. Britvin
Affiliation:
Dept. of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Evgeny G. Sidorov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Igor V. Pekov, Email: [email protected]

Abstract

Calciolangbeinite, ideally K2Ca2(SO4)3, exists in two modifications, cubic and, first described in the present paper, orthorhombic. They are topologically-similar polymorphs which can be designated as calciolangbeinite-C and calciolangbeinite-O. Calciolangbeinite-O is the first natural orthorhombic langbeinite-like sulfate. It clearly differs from calciolangbeinite-C in the powder X-ray diffraction pattern, optical data and Raman spectrum. Calciolangbeinite-O is found in sublimates of the active Arsenatnaya fumarole at the Tolbachik volcano, Kamchatka, Far Eastern Region, Russia and in pyrometamorphic rocks of the Hatrurim Complex at Jabel Harmun, Judean Desert, Palestinian Autonomy and Har Parsa, Negev Desert, both in Israel. Calciolangbeinite-C is known only in fumarole sublimates at Tolbachik. Calciolangbeinite forms a continuous solid-solution system with langbeinite K2Mg2(SO4)3. The majority of the system is represented by cubic phases, and only members with compositions K2(Ca2.0–1.9Mg0.0–0.1)(SO4)3 have orthorhombic symmetry under room-temperature conditions. The crystal structure of calciolangbeinite-O was studied on a single crystal, chemically very close to K2Ca2(SO4)3, from Tolbachik (R1 = 2.75%). The unit-cell parameters are: a = 10.3330(2), b = 10.5027(2), c = 10.1763(2) Å, V = 1104.37(4) Å3 and Z = 4; space group is P212121. Calciolangbeinite-O is a low-temperature modification of K2Ca2(SO4)3 belonging to the K2Cd2(SO4)3 structure type whereas calciolangbeinite-C (space group P213), a high-temperature modification, has the langbeinite-type structure. The significant Mg admixture in calciolangbeinite-C from Tolbachik probably stabilises its cubic structure at room temperature. In both high-temperature fumaroles and pyrometamorphic rocks calciolangbeinite crystallises in the cubic modification, and during cooling its chemical variety close to the end-member K2Ca2(SO4)3 undergoes phase transition to calciolangbeinite-O, whereas the Mg-enriched varieties of the mineral remain calciolangbeinite-C.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is part of a thematic set that honours the contributions of Peter Williams

Deceased 20 March 2021

Guest Associate Editor: Clara Magalhães

References

Abrahams, S.C. and Bernstein, J.L. (1977) Piezoelectric langbeinite-type K2Cd2(SO4)3. Room temperature crystal structure and ferroelastic transformation. Journal of Chemical Physics, 67, 21462150.CrossRefGoogle Scholar
Agilent Technologies (2012) CrysAlisPro Software system, version 1.171.35.21. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy. V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, UK.Google Scholar
Bellanca, A. (1947) Sulla simmetria della manganolangbeinite. Rendiconti dell'Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Serie VIII, 2, 451455.Google Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M. and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new “old’’ mineral from the Negev Desert, Israel, and the ternesite–silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Kasatkin, A.V., Plášil, J., Škoda, R., Campostrini, I., Chukanov, N.V., Agakhanov, A.A., Karpenko, V.Yu. and Belakovskiy, D.I. (2021) Ferroefremovite, (NH4)2Fe2+2(SO4)3, a new mineral from Solfatara di Pozzuoli, Campania, Italy. The Canadian Mineralogist, 59, 5968.CrossRefGoogle Scholar
Lander, L., Rousse, G., Batuk, D., Colin, C., Corte, D.D. and Tarascon, J.-M. (2017) Synthesis, structure and electrochemical properties of K-based sulfates K2M2(SO4)3 with M = Fe and Cu. Inorganic Chemistry, 56, 20132021.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Morey, G.W., Rowe, J.J. and Fournier, R.O. (1964) The system K2Mg2(SO4)3 (langbeinite) – K2Ca2(SO4)3 (calcium-langbeinite). Journal of Inorganic and Nuclear Chemistry, 26, 5358.CrossRefGoogle Scholar
Nakamoto, K. (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, 6th Edition. John Wiley & Sons, Inc., New York.Google Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 59, 913926.Google Scholar
Novikov, I., Ye, Vapnik. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Oelkrug, H., Brückel, T., Hohlwein, D., Hoser, A. and Prandl, W. (1988) The magnetic structure of the langbeinite K2Mn2(SO4)3. Physics and Chemistry of Minerals, 16, 246249.CrossRefGoogle Scholar
Pekov, I.V., Zelenski, M.E., Zubkova, N.V., Yapaskurt, V.O., Chukanov, N.V., Belakovskiy, D.I. and Pushcharovsky, D.Yu. (2012): Calciolangbeinite, K2Ca2(SO4)3, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 76, 673682.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6. Mineralogical Magazine, 78, 905917.CrossRefGoogle Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Prieto-Taboada, N., Fdez-Ortiz de Vallejuelo, S., Veneranda, M., Lama, E., Castro, K., Arana, G., Larrañag, A. and Madariaga, J.M. (2019) The Raman spectra of the Na2SO4–K2SO4 system: Applicability to soluble salts studies in built heritage. Journal of Raman Spectroscopy, 50, 175183.CrossRefGoogle Scholar
Ramsdell, L.S. (1935) An X-ray study of the system K2SO4–MgSO4–CaSO4. The American Mineralogist, 20, 569574.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Shcherbakova, E.P. and Bazhenova, L.F. (1989) Efremovite (NH4)2Mg2(SO4)3 – the ammonium analogue of langbeinite – a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 118(3), 8487 [in Russian].Google Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Shimobayashi, N., Ohnishi, M. and Miura, H. (2011) Ammonium sulfate minerals from Mikasa, Hokkaido, Japan: boussingaultite, godovikovite, efremovite and tschermigite. Journal of Mineralogical and Petrological Sciences, 106, 158163.CrossRefGoogle Scholar
Siidra, O.I., Nekrasova, D.O, Charkin, D.O., Zaitsev, A.N, Borisov, A.S., Colmont, M., Mentré, O. and Spiridonova, D.V. (2021) Anhydrous alkali copper sulfates – a promising playground for new Cu2+ oxide complexes: new Rb-analogues of fumarolic minerals. Mineralogical Magazine, 85, 831845.CrossRefGoogle Scholar
Speer, D. and Salje, E. (1986) Phase transitions in langbeinites. I. Crystal chemistry and structures of K-double sulfates of the langbeinite type M2++ K2(SO4)3, M++ = Mg, Ni, Co, Zn, Ca. Physics and Chemistry of Minerals, 13, 1724.CrossRefGoogle Scholar
Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. American Journal of Science, 293, 758864.CrossRefGoogle Scholar
Tesfaye, F., Lindberg, D., Moroz, M. and Hupa, L. (2020) Investigation of the K-Mg-Ca sulfate system as part of monitoring problematic phase formations in renewable-energy power plants. Energies, 13, paper 5366.CrossRefGoogle Scholar
Zambonini, F. and Carobbi, G. (1924) Sulla presenza, tra i prodotti dell'attuale attività del Vesuvio, del composto Mn2K2(SO4)3. Rendiconti della Regia Accademia delle Scienze Fisiche e Matematiche di Napoli, 30, 123126.Google Scholar
Supplementary material: File

Pekov et al. supplementary material

Pekov et al. supplementary material

Download Pekov et al. supplementary material(File)
File 77.6 KB