Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T08:15:05.999Z Has data issue: false hasContentIssue false

BBonding in minerals: the application of PAX (photoelectron and X-ray) spectroscopy to the direct determination of electronic structure

Published online by Cambridge University Press:  05 July 2018

David S. Urch*
Affiliation:
Chemistry Department, Queen Mary College, Mile End Road, London E14NS, UK

Abstract

X-ray photoelectron spectroscopy can be used to measure the ionization energies of electrons in both valence band and core orbitals. As core vacancies are the initial states for X-ray emission, a knowledge of their energies for all atoms in a mineral enables all the X-ray spectra to be placed on a common energy scale. X-ray spectra are atom specific and are governed by the dipole selection rule. Thus the individual bonding roles of the different atoms are revealed by the fine structure of valence X-ray peaks (i.e. peaks which result from electron transitions between valence band orbitals and core vacancies). The juxtaposition of such spectra enables the composition of the molecular orbitals that make up the chemical bonds of a mineral to be determined.

Examples of this approach to the direct determination of electronic structure are given for silica, forsterite, brucite, and pyrite. Multi-electron effects and developments involving anisotropic X-ray emission from single crystals are also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, B. K. (1979) X-ray Spectroscopy—An Introduction, Springer-Verlag, Heidelberg, FRG.Google Scholar
Al-Kadier, M. A., Tolon, C. and Urch, D. S. (1984) Photoelectron and X-ray spectroscopy of minerals. Part 1—Electronic structure of forsterite (magnesium orthosilicate). J. Chem. Soc., Faraday Trans. 2 80, 669-79.CrossRefGoogle Scholar
Arber, J. M., Urch, D. S. and West, N. G. (1988) Determination of chromium oxidation state by X-ray fluorescence spectrometry: application to chromium (VI) and chromium (III) determination in occupational hygiene samples. The Analyst 113, 779-82.CrossRefGoogle ScholarPubMed
Atkins, P. W. (1983) Molecular Quantum Mechanics, Chapter 10, 2nd ed. Oxford Univ. Press, Oxford, UK.Google Scholar
Berg, U., Dräiger, G., Mosebaeh, K. and Brümmer, O. (1976) Combined XS ND XPS investigations of the FeS2 valence band. Phys. Stat. Sol. (b) 75, K8992.CrossRefGoogle Scholar
Briggs, D. and Seah, M. P. (1983) Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. John Wiley & Sons, Chichester, UK.Google Scholar
Brytov, I. A., Dikov, Yu. P., Romashchenko, Yu. N., Dolin, S. P. and Debol'skii, E. I. (1976) X-ray spectral study of silicate and aluminosilicate minerals. lzv. Akad. Nauk. USSR, Ser. Fiz. 40, 413-19 (Russ. original), 40 (part 2), 164-9 (Eng. trans.).Google Scholar
Cade, P. E. (1967) Hatree-Fock wavefunctions, potential curves and molecular properties for OH- (1Σ+) and SH- (1Σ+). j. Chem. Phys. 47, 2390-406.CrossRefGoogle Scholar
Collins, G. A. D., Cruickshank, D. W. J. and Breeze, A. (1972). Ab Initio calculations on the silicate ion, orthosilicic acid and their L2,3 X-ray spectra. J. Chem. Soc., Faraday Trans. H 68, 118-95.Google Scholar
Compton, A. H. and Allinson, S. K. (1935) X-rays in Theory and Experiment. Van Nostrand, New York, NY, USA.Google Scholar
Dikov, Yu., P., , Debolsky, E. I., Romashchenko, Yu. N., Dolin, S. P. and Levin, A. A. (1977) Molecular orbitals of Si2O7 6-, Si3O10 8-etc. and mixed (B, AI, P, Si)m applied to clusters and X-ray spectroscopy data of silicates. Phys. Chem. Minerals 1, 27-41.CrossRefGoogle Scholar
Dodd, C. B. and Glenn, G. L. (1968a) Chemical bonding studies of silicates and oxides by X-ray K-emission spectroscopy. J. Appl. Phys. 39, 5377-84.CrossRefGoogle Scholar
Dodd, C. B. and Glenn, G. L. (1968b) A survey of the chemical bonding in silicate minerals by X-ray emission spectroscopy. Am. Mineral. 54, 1299-311.Google Scholar
Domcke, W., Cederbaum, L. S., Schirmer, J., von Nieesen, W. and Maier, J. P. (1978) Breakdown of the molecular orbital picture of ionization for inner valence electrons: experimental and theoretical study of H2S and PH3 . J. Elec. Spec. and Rel. Phenom. 14, 5-72.CrossRefGoogle Scholar
Fadley, C. S. (1972) Multiplet splittings in photoelectron spectra. In Electron Spectroscopy. (Shirley, D. A., ed.), North-Holland Pub. Co., Amsterdam, Netherlands, pp. 781801.Google Scholar
Fischer, D. W. and Baun, W. L. (1965) Diagram and nondiagram lines in the K spectra of aluminium and oxygen from metallic and anodized aluminium. J. Appl. Phys. 36, 534-7.CrossRefGoogle Scholar
Frost, D. C., Ishitani, A. and McDowell, C. A. (1972) X-ray photoelectron spectroscopy of copper compounds. Molec. Phys. 24, 861-77.CrossRefGoogle Scholar
Glenn, G. L. and Dodd, C. G. (1968) Use of molecular orbital theory to interpret X-ray K-absorption spectra data. J. Appl. Phys. 39, 5372-7.CrossRefGoogle Scholar
Hagström, S. B. M. and Fadley, C. S. (1974) X-ray photoelectron spectroscopy. In X-ray Spectroscopy. (Azaroff, L. V., ed.), McGraw Hill, New York, NY, USA, pp. 379444.Google Scholar
Haycock, D. E., Kasrai, M., Nicholls, C. J. and Urch, D. S. (1979) The electronic structure of magnesium hydroxide (Brucite) using X-ray emission, X-ray photoelectron and Auger spectroscopy. J. Chem. Soc.—Dalton Trans., pp. 1791-6.Google Scholar
Herglotz, H. K. and Birks, L. S. (1978) X-ray Spectrometry. Marcel Dekker, New York, NY, USA.Google Scholar
Holm, R. and Storp, S. (1977) ESCA studies on changes in surface composition under ion bombardment. Appl. Phys. 12, 101-12.CrossRefGoogle Scholar
Jenkins, R. and de Vries, J. L. (1970) Practical X-ray Spectrometry. MacMillan, London, UK.CrossRefGoogle Scholar
Jones, J. B. and Urch, D. S. (1983) Analytical potential of valence state and ligand atom effects in titianium K X-ray spectra. The Analyst 108, 1477-80.CrossRefGoogle Scholar
Krause, M. O. and Carlson, T. A. (1967) Vacancy cascade in the reorganization of krypton ionized in an inner shell. Phys. Rev. 158, 18-24.CrossRefGoogle Scholar
Larkins, F. P. and Rowlands, T. W. (1986) Importance of Interatomic Contributions to Molecular X-ray Emission Processes. J. Phys. B: Atomic and Mol. Phys. 19, 591-7.CrossRefGoogle Scholar
Läiuger, K. (1972) Über den Einfluss der Bindungsart und der Kristall-struktur auf die Röntgen Kα-satelliten von Aluminium. J. Phys. Chem. Solids 33, 1343-53.CrossRefGoogle Scholar
Li, E. K., Johnson, K. H., Easman, D. E. and Freeouf, J. L. (1974) Localized and band valence-electron states in FeS2 and NiS2 . Phys. Rev. Letters 32, 470-2.CrossRefGoogle Scholar
Manne, R. (1970) Interpretation of X-ray Emission Spectra of Molecules. J. de Physique 32-C4, 151-3.Google Scholar
Martin, R. L. and Shirley, D. A. (1977) Many electron theory of electron emission. I. Electron Spectroscopy: Theory, Techniques and Applications 1 (Brundle, C. R. and Baker, A. D., eds.). Academic Press, London, UK, pp. 75117.Google Scholar
Murrell, J. N., Kettle, S. F. A. and Tedder, J. M. (1965) Valence Theory. John Wiley & Sons, London, UK.Google Scholar
Price, W. C. (1977) Ultraviolet photoelectron spectroscopy: basic concepts and the spectra of small molecules. I. Electron Spectroscopy: Theory, Techniques and Applications 1 (Brundle, C. R. and Baker, A. D., eds.). Academic Press, London, UK, pp. 151203.Google Scholar
Purton, J. A. and Urch, D. S. (1989) High resolution silicon K/3 spectra and crystal structure. Mineral Mag. 53, 239-44.CrossRefGoogle Scholar
Rivière, J. C. (1983) Instrumentation. In Practical Surface Analysis (Briggs, D. and Seah, M. P., eds.). John Wiley & Sons, Chichester, UK, pp. 1785.Google Scholar
Romand, M., Bador, R., Charbonnier, M. and Gaillard, F. (1987) Surface and near-surface chemical characterization by low-energy electron induced Xray spectrometry (LEEIXS), a review. X-ray Spectrometry 16, 7-16.CrossRefGoogle Scholar
Scofield, J. H. (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487eV. J. Electr. Spec. and Rel. Phenom. 8, 12-37.Google Scholar
Siegbahn, K., Nordling, C., Johansson, G., Hedam, J., Hedén, P. F., Gelius, U., Bergmark, T., Werme, L. O., Manne, R. and Baer, Y. (1969) ESCA applied to free molecules. North-Holland Pub. Co., Amsterdam, Netherlands.Google Scholar
Sugiura, C., Suzuki, I., Kashiwakura, J. and Goshi, Y. (1976) Sulfur K[3X-ray emission bands and valence-band structures of transition-metal disulfides. J. Phys. Soc. Japan 40, 1720-4.CrossRefGoogle Scholar
Szász, A., Kojnok, J. and Kertész, L. (1984) Soft X-ray depth analysis (SXDA) as a new tool for interface spectroscopy. Abstracts, Int. Conf. on X-ray and Inner-shell processes in atoms, molecules and solids. (Meisel, A., ed.). Karl-Marx-Univ., Leipzig, DDR, pp. 455-7.Google Scholar
Taniguchi, K. and Henke, B. L. (1976) Sulfur L11,111 emission spectra and molecular orbital studies of sulfur compounds. J. Chem. Phys. 64, 3021-35.CrossRefGoogle Scholar
Tegeler, E., Kosuch, N., Wiech, G. and Faessler, A. (1980) Molecular orbital analysis of the CO3 -- ion by studies of the anisotropic X-ray emission of its components. J. Elect. Spec. and Rel. Phenom. 18, 23-8.CrossRefGoogle Scholar
Tossell, J. A. (1973) Molecular orbital interpretation of X-ray emission and ESCA spectral shifts in silicates. J. Phys. Chem. Solids 34, 307-19.CrossRefGoogle Scholar
Tossell, J. A. (1975) The electronic structures of silicon, aluminium and magnesium in tetrahedral coordination with oxygen from SCF-Kα MO calculations. J. Am. Chem. Soc. 97, 4840-4.CrossRefGoogle Scholar
Tossell, J. A. (1977) A comparison of silicon-oxygen bonding in quartz and magnesium olivine from X-ray spectra and molecular orbital calculations. Am. Mineral. 62, 136-41.Google Scholar
Tossell, J. A. Vaughan, D. J. and Johnson, K. H. (1973) X-ray photoelectron, X-ray emission and UV spectra of SiO2 calculated by the SCF Xa scattered wave method. Chem. Phys. Letters 20, 329-34.CrossRefGoogle Scholar
Urch, D. S. (1969) Direct evidence fo. 3d-2p 7r-bonding in oxy-anions. J. Chem. Soc. A pp. 3026-8.CrossRefGoogle Scholar
Urch, D. S. (1970) The origin and intensities of low energy satellite lines in X-ray emission spectra: a molecular orbital interpretation. J. Phys. C: Solid State Phys. 3, 1275-91.CrossRefGoogle Scholar
Urch, D. S. (1979) Orbitals and Symmetry, Macmillan, Basingstoke, UK.Google Scholar
Urch, D. S. (1982) The temporary covalence of potassium fluoride (in X-ray and Auger spectra processes). J. Chem. Soc.—Chem. Comm. pp. 526-8.CrossRefGoogle Scholar
Urch, D. S. (1985) X-ray spectroscopy and chemical bonding in minerals. In Chemical Bonding and Spectroscopy in Mineral Chemistry (Berry, F. J. and Vaughan, D. J., eds.). Chapman and Hall, London, UK, pp. 3161.CrossRefGoogle Scholar
Urch, D. S. and Wood, P. R. (1978) The determination of the valency of manganese in minerals by X-ray fluoresence spectroscopy. X-ray Spectroscopy 7, 911.CrossRefGoogle Scholar
White, E. W. and Gibbs, G. V. (1967) Structural and chemical effects on the Si-Kfl X-ray line for silicates. Am. Mineral. 52, 985-93.Google Scholar
Wendin, G. and Ohno, M. (1976) Strong dynamical effects of many electron interactions in photoelectron spectra from 4s and 4p core levels. Physica Scipta 14, 148-61.CrossRefGoogle Scholar
Wiech, G. (1981) Anisotropic emission of radiation, in inner shell and X-ray physics of atoms and solids. (Fabian, D. J., Kleinpoppen, H. and Watson, L. M., eds.), Plenum Press, London, UK, pp. 815-23.Google Scholar
Wiech, G., Köppen, W. and Urch, D. S. (1972) X-ray emission spectra and electronic structure of the disulphide anion. lnorg. Chim. Acta 6, 376-8.CrossRefGoogle Scholar