Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T22:44:21.045Z Has data issue: false hasContentIssue false

Astrophyllite-group minerals from the Ilímaussaq complex, South Greenland (contribution to the mineralogy of Ilímaussaq no. 123)

Published online by Cambridge University Press:  05 July 2018

R. Macdonald
Affiliation:
Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
S. Karup-Møller
Affiliation:
Environment and Resources, Technical University of Denmark, Bygning 113, DK-2800 Lyngby, Denmark
J. Rose-Hansen
Affiliation:
Geological Institute, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

Abstract

Electron microprobe analyses are presented for astrophyllite-group minerals from hydrothermal veins and pegmatites of the Ilimaussaq complex, South Greenland. The analyses fall mainly into two groups: (1) niobophyllites with the highest Nb/(Nb+Ti) ratios yet recorded (∼0.9), occurring only in the veins, and (2) an essentially continuous sequence from astrophyllite to niobophyllite with Nb/(Nb+Ti) up to 0.6, found in veins and pegmatites. It is highly likely that there is complete solid solution between astrophyllite and niobophyllite. More limited substitution of Mn for Fe has resulted in the formation of kupletskite in some rocks. Altered zones in certain astrophyllites and niobophyllites have compositional features similar to the type ‘hydroastrophyllite’. The astrophyllite-group minerals in the hydrothermal veins crystallized at temperatures below 400°C at 1 kbar and under high pH and low oxygen fugacity, whereas those in the pegmatites were formed from water-rich melts which were hotter (≥450°C), less basic and more oxidized.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Rahman, A.-B.M. (1992) Mineral chemistry and paragenesis of astrophyllite from Egypt. Mineralogical Magazine, 56, 17–26.CrossRefGoogle Scholar
Andersen, S., Bohse, H. and Steenfelt, A. (1988) The southern part of the Ilímaussaq complex, South Greenland, 1:20, 000. Copenhagen: Geological Survey of Greenland.Google Scholar
Belkovskiy, A.I. (1978) The chemical composition of accessory astrophyllite of alkalic granites. Pp. 3–11 in: The Mineralogy and Geochemistry of the Urals (Popov, VA. and YKornilov, u.B., editors), Trudy Il'menskogo Gosudarstvennogo Zapovednika, 16 (in Russian).Google Scholar
Birkett, T.C., Trzcienski, W.E., Jr and Stirling, J.A.R. (1996) Occurrence and compositions of some Ti-bearing minerals in the Strange Lake intrusive complex, Québec-Labrador boundary. The Canadian Mineralogist, 34, 779–801.Google Scholar
Bohse, H., Brooks, C.K. and Kunzendorf, H. (1971) Field observations on the kakortokites of the Ilímaussaq intrusion, South Greenland, including mapping and analysis by portable X-ray fluorescence equipment for zirconium and niobium. Rapport Grønlands Geologiske Undersøgelse, 38, 43 pp.Google Scholar
Dziedzic, A. (1984) Elk syenite intrusion. Biuletyn Instytutu Geologicznego, 347, 39–47.Google Scholar
Efimov, A.F., Dusmatov, V.D., Ganzeev, A.A. and Kataeva, Z.T. (1971) Cesium kupletskite, a new mineral. Transactions (Doklady) of the U. Academy S.S.R. of Sciences: Earth Science Sections, 197, 140–143.Google Scholar
Engell, J. (1968) Beskrivelse af forekomst og dannelse af nogle ussingitårer i Ilímaussaq-intrusionen. Unpublished prize dissertation, University of Copenhagen. 203 pp. (Review: Fetskrift Københavns Universitet, 1968, 335–340).Google Scholar
Engell, J., Hansen, J., Jensen, M., Kunzendorf, H. and Løvborg, I. (1971) Beryllium mineralization in the Ilímaussaq intrusion, South Greenland, with description of a field beryllometer and chemical methods. Rapport Grønlands Geologiske Undersøgelse, 33, 40 pp.Google Scholar
Ferguson, J. (1964) Geology of the Ilímaussaq alkaline intrusion, South Greenlan Description of map and structure. Bulletin Grønlands Geologiske Undersøgelse, 39, 82 pp. (also Meddelelser om Granland, 172 (4).Google Scholar
Fleischer, M., Chao, G.Y. and Cabri, LJ. (1975) New mineral names. American Mineralogist, 60, 736–739.Google Scholar
Guastoni, A., Pezzotta, F. and Demartin, F. (2003) Le pegmatiti di Zomba-Malosa (Malawi). Rivista Mineralogica Italiana, 27, 66–77.Google Scholar
Hamilton, E.I. (1964) The geochemistry of the northern part of the Ilímaussaq intrusio, Greenland, S.W.. Bulletin Grønlands Geologiske Undersøgelse, 42, 104 pp.Google Scholar
Hansen, J. (1968) Niobium mineralization in the Ilímaussaq alkaline complex, south-west Greenland. 23rd International Geological Congress, 7, 263–273.Google Scholar
Hubei Geological College, X-ray Laboratory (1974) The crystal chemistry of astrophyllite group minerals. Scientia Geologica Sinica, 1, 18–33.(in Chinese).Google Scholar
Kapustin, Yu.L. (1973) Zircophyllite, the zirconium analog of astrophyllite. International Geology Review, 15, 621–625.CrossRefGoogle Scholar
Kapustin, Yu.L. (1982) Minerals of the astrophyllite group from the Tuva alkalic rocks and their trace element contents. Geokhimiya, 1982, 533–540.(in Russian).Google Scholar
Karup-Møller, S. (1975) On the occurrence of the native lead, litharge, hydrocerussite and platnerrite within the Ilímaussaq alkaline intrusion in South Greenland. Neues Jahrbuchfiir Mineralogie Monatshefte, 1975, 291–313.Google Scholar
Karup-Møller, S. (1982) Tundrite from the Ilímaussaq alkaline intrusion, South Greenland. Neues Jahrbuch für Mineralogie Monatshefte, 1982, 481–494.Google Scholar
Konnerup-Madsen, J. (2001) A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. In: The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results (Sørensen, H., editor). Geology of Greenland Survey Bulletin, 190, 159–166.Google Scholar
Konnerup-Madsen, J. and Rose-Hansen, J. (1982) Volatiles associated with alkaline igneous activity: fluid inclusions in the Ilímaussaq intrusion and the Gardar granitic complexes (South Greenland). Chemical Geology, 37, 79–93.CrossRefGoogle Scholar
Kunitz, W. (1936) Die Rolle des Titans und Zirkoniums in den gesteinsbildenden Silikaten. Neues Jahrbuch für Mineralogie Beilage-Band, 70A, 385–466.Google Scholar
Larsen, L.M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. Journal of Petrology, 17, 258–290.CrossRefGoogle Scholar
Larsen, L.M. and Sørensen, H. (1987) The Ilímaussaq intrusion – progressive crystallization and formation of layering in an agpaitic magma. Pp. 473–508 in: Alkaline Igneous Rocks (Fitton, J.G. and Upton, B.G.J., editors). Special Publication, 30, Geological Society, London.Google Scholar
Larsen, L.M. and Steenfelt, A. (1974) Alkali loss and retention in an iron-rich peralkaline phonolite from the Gardar province, south Greenland. Lithos, 7, 81–90.Google Scholar
Lorenzen, J. (1884) Fortsatte Undersøgelser af Mineralier fra Kangerdluarsuk. Meddelelser om Grenland, 77, 33–46.Google Scholar
Macdonald, R. and Saunders, MJ. (1973) Chemical variation in minerals of the astrophyllite group. Mineralogical Magazine, 39, 97–111.CrossRefGoogle Scholar
Markl, G. (2001) Stability of Na-Be minerals in late-magmatic fluids of the Ilímaussaq alkaline complex, South Greenland. In: The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results (Sørensen, H., editor). Geology of Greenland Survey Bulletin 190, 145–158.Google Scholar
Markl, G. and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology, 144, 331–346.CrossRefGoogle Scholar
Markl, G., Marks, M., Schwinn, G. and Sommer, H. (2001) Phase equilibria constraints on intensive crystallization parameters of the Ilímaussaq complex, South Greenland. Journal of Petrology, 42, 2231–2257.CrossRefGoogle Scholar
Marks, M. and Markl, G. (2003) Ilímaussaq ‘en miniature': closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland (Contribution to the mineralogy of Ilímaussaq no. 117). Mineralogical Magazine, 67, 893–919.CrossRefGoogle Scholar
Müller-Lorch, D., Marks, M.A.W. and Markl, G. (2006) Na and K distribution in agpaitic pegmatites. Lithos, 95, 315–330.Google Scholar
Nickel, E.H., Rowland, J.F. and Charette, DJ. (1964) Niobophyllite – the niobium analogue of astro-phyllite: a new mineral from Seal Lake, Labrador. The Canadian Mineralogist, 8, 40–52.Google Scholar
Petersen, O.V. (2001) List of all minerals identified in the Ilímaussaq alkaline complex, South Greenland. In:The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results (Sørensen, H., editor). Geology of Greenland Survey Bulletin, 190, 25–33.Google Scholar
Piilonen, P.C., Lalonde, A.E., McDonald, A.M. and Gault, R.A. (2000) Niobokupletskite, a new astro-phyllite-group mineral from Mont Saint-Hilaire, Québec, Canada: description and crystal structure. The Canadian Mineralogist, 38, 627–639.CrossRefGoogle Scholar
Piilonen, P.C., Lalonde, A.E., McDonald, A.M., Gault, R.A. and Larsen, A.O. (2003) Insights into astrophyllite-group minerals. 1. Nomenclature, composition and development of a standardized general formula. The Canadian Mineralogist, 41, 1–26.CrossRefGoogle Scholar
Piilonen, P.C., Rancourt, D.G., Evans, R.J., Lalonde, A.E., McDonald, A.M. and Shabani, A.A.T. (2004) The relationships between crystal-chemical and hyperfine parameters in members of the astrophyllite-group: A combined 57Fe Mössbauer spectro-scopy and single-crystal X-ray diffraction study. European Journal of Mineralogy, 16, 989–1002.CrossRefGoogle Scholar
Rose-Hansen, J. and Sørensen, H. (2002) Geology of the lujavrites from the Ilímaussaq alkaline complex, South Greenland, with information from seven bore holes. Meddelelser om Grønland Geoscience, 40, 58 pp.Google Scholar
Ryka, W. (1994) Geology and evolution of the Elk syenite massif. Prace Pahstwowego Instytutu Geologicznego, 144, 85–120.Google Scholar
Semenov, E.I. (1956) Kupletskite, a new mineral of the astrophyllite group. Doklady Akademii Nauk SSSR, 108, 933–936.Google Scholar
Semenov, E.I. (1969) Mineralogy of the Ilímaussaq Alkaline Massif. Izd. Nauka, Moscow. 164 pp. (in Russian).Google Scholar
Semenov, E.I., Bohse, H., Sørensen, H. and Kataeva, S.T. (1987) Leucophanite in alkaline pegmatites from Ilímaussaq. Mineralogicheskii Zhurnal, 9, 84–85.(in Russian).Google Scholar
Shi, N., Ma, Z., Li, G., Yamnova, N.A. and Pushcharovsky, D.Yu. (1998) Structure refinement of monoelinie astrophyllite. Ada Crystallographica , B54, 109–114.Google Scholar
Sørensen, H. (editor) (2001) The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results. Geology of Greenland Survey Bulletin, 190, 167 pp.Google Scholar
Stephenson, D. and Upton, B.G.J. (1982) Ferromagnesian silicates in a differentiated alkaline complex: Kûngnât Fjeld, south Greenland. Mineralogical Magazine, 46, 283–300.CrossRefGoogle Scholar
Ussing, N.V. (1912) Geology of the country around Julianehab, Greenland. Meddelelser om Grønland, 38, 426 pp.Google Scholar
Voloshin, A.V., Lyalina, L.M., Ovchinnikov, N.O., Savchenko, E.E. and Bogdanova, A.N. (2004) Hydroastrophyllite and Mössbauer spectroscopy of minerals of the astrophyllite group from the silexites of Western Keivy, Kola Peninsula. Geochemistry International, 42, 988–993.Google Scholar
Woodrow, P.J. (1967) The crystal structure of astrophyllite. Ada Crystallographica, 22, 673–678.Google Scholar