Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T06:51:06.388Z Has data issue: false hasContentIssue false

As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: III. Canosioite, Ba2Fe3+(AsO4)2(OH), description and crystal structure

Published online by Cambridge University Press:  02 January 2018

F. Cámara*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Tommaso Valperga Caluso 35, I-10125 Torino, Italy CrisDi, Interdepartmental Centre for the Research and Development of Crystallography, via Pietro Giuria 5, I-10125 Torino, Italy
E. Bittarello
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Tommaso Valperga Caluso 35, I-10125 Torino, Italy CrisDi, Interdepartmental Centre for the Research and Development of Crystallography, via Pietro Giuria 5, I-10125 Torino, Italy
M. E. Ciriotti
Affiliation:
Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Cirié, Torino, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, via G. Gradenigo 6, I-35131 Padova, Italy
F. Radica
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, largo San Leonardo Murialdo 1, I-00146 Roma, Italy
F. Massimi
Affiliation:
Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi Roma Tre, via della Vasca Navale 79, I-00146 Roma, Italy
C. Balestra
Affiliation:
Associazione Micromineralogica Italiana, via Luigi Delfino 74, I-17017 Millesimo, Savona, Italy
R. Bracco
Affiliation:
Associazione Micromineralogica Italiana, via Montenotte 18/6, I-17100 Savona, Italy
*

Abstract

The new mineral species canosioite, ideally Ba2Fe3+(AsO4)2(OH), has been discovered in the dump of Valletta mine, Maira Valley, Cuneo Province, Piedmont, Italy. Its origin is probably related to the reaction between ore minerals and hydrothermal fluids. It occurs in reddish-brown granules, subhedral millimetre-size crystals, with a pale yellow streak and vitreous lustre. Canosioite is associated with aegirine, baryte, calcite, hematite, bronze Mn-bearing muscovite, unidentified Mn oxides and unidentified arsenates. Canosioite is biaxial (+) with a 2Vmeas = 84(2)°. It is weakly pleochroic with X = brownish yellow, Y = brown, Z = reddish brown, Z > Y > X. Canosioite is monoclinic, P21/m, with a = 7.8642(4), b = 6.1083(3), c = 9.1670(5) Å, β = 112.874(6)°, V = 405.73(4) Å3 and Z = 2. Calculated density is 4.943 g cm–3. The seven strongest diffraction lines of the observed powder X-ray diffraction pattern are [d in Å, (I) (hkl)]: 3.713 (18)(111), 3.304 (100)(211̄), 3.058 (31)(020), 3.047 (59)(103̄), 2.801 (73)(112), 2.337 (24)(220), 2.158 (24)(123̄). Electron microprobe analyses gave (wt.%): Na2O 0.06, MgO 0.43, CaO 0.02, NiO 0.02, CuO 0.03, SrO 0.42, BaO 49.36, PbO 1.69, Al2O3 1.25, Mn2O3 3.89, Fe2O3 6.95, Sb2O3 0.01, SiO2 0.03, P2O5 0.02, V2O5 10.88, As2O5 24.64, SO3 0.01, F 0.02, H2O1.61 was calculated on the basis of 1 (OH,F,H2O) group per formula unit. Infrared spectroscopy confirmed the presence of OH. The empirical formula calculated on the basis of 9 O apfu, is (Ba1.92Pb0.05Sr0.02Na0.01)∑2.00(Fe0.523+Mn0.293+Al0.15Mg0.06)∑1.02[(As0.64V0.36)∑1.00O4]2[(OH0.92F0.01)(H2O)0.07]and the ideal formula is Ba2Fe3+(AsO4)2(OH). The crystal structure was solved by direct methods and found to be isostructural to that of arsenbrackebuschite. The structure model was refined (R1 = 2.6%) on the basis of 1245 observed reflections. Canosioite is named after the small municipality of Canosio, where the type locality, the Valletta mine, is situated. The new mineral and name were approved by the International Mineralogical Association Commission on New Minerals and Mineral Names (IMA2015-030).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, K., Kautz, K., Tillmanns, E. and Walenta, K. (1978) Arsenbrackebuschite, Pb2(Fe,Zn)(OH,H2O) [AsO4]2, a new arsenate mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 193196.Google Scholar
Basso, R., Palenzona, A. andZefiro, L. (1987) Gamagarite: new occurrence and crystal structure refinement. Neues Jahrbuch für Mineralogie, Monatshefte, 295304.Google Scholar
Bideaux, R.A., Nichols, M.C. and Williams, S.A. (1966) The arsenate analog of tsumebite, a new mineral. American Mineralogist, 51, 258259.Google Scholar
Brackebusch, L., Rammelsberg, C., Doering, A. and Websky, M. (1883) Sobre los vanadatos naturales de las provincias de Córdoba y San Luis (República Argentina). Boletín de la Academia Nacional de Ciencias (Córdoba), 5, 439524.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II, (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York. Google Scholar
Brunet, F., Gebert, W., Medenbach, O. and Tillmanns, E. (1993) Bearthite, Ca2Al[PO4]2(OH), a new mineral from high-pressure terranes of the western Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 19.Google Scholar
Brunet, F and Chopin, C. (1995) Bearthite, Ca2Al (PO4)2OH: stability, thermodynamic properties and phase relations. Contributions to Mineralogy and Petrology, 121, 258266.CrossRefGoogle Scholar
Busz, K. (1912) Tsumebit, ein neues Mineral von Otavi und Zinnsteinkristalle. Deutschen Naturforscher und Årtze in Münster, 84, 230230.Google Scholar
Cámara, F., Ciriotti, M.E., Bittarello, E., Nestola, F., Bellatreccia, F., Massimi, F., Radica, F., Costa, E., Benna, P. and Piccoli, G.C. (2014) Arsenic-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure. Mineralogical Magazine, 78, 757774.CrossRefGoogle Scholar
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F., Marchesini, M. (2015a) As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: II. Braccoite, NaMn25[Si5AsO17(OH)](OH), description and crystal structure. Mineralogical Magazine, 79, 171189.CrossRefGoogle Scholar
Cámara, F., Bittarello, E., Ciriotti, M.E., Nestola, F., Radica, F., Massimi, F., Balestra, C. and Bracco, R. (2015b) Canosioite, IMA 2015-030. CNMNC Newsletter No. 26, August 2015, page 945; Mineralogical Magazine, 79, 941947.CrossRefGoogle Scholar
Clark, A.M., Criddle, A.J., Roberts, A.C., Bonardi, M. and Moffatt, E.A. (1997) Feinglosite, a new mineral related to brackebuschite, from Tsumeb, Namibia. Mineralogical Magazine, 61, 285289.CrossRefGoogle Scholar
de Villiers, J.E. (1943) Gamagarite, a new vanadium mineral from the Postmasburg manganese deposits. American Mineralogist, 28, 329335.Google Scholar
Donaldson, D.M. and Barnes, W.H. (1955) The structures of the minerals of the descloizite group and adelite groups: III — brackenbuschite. American Mineralogist, 40, 597613.Google Scholar
Fanfani, L. andZanazzi, P.F (1967) Structural similarities of some secondary lead minerals. Mineralogical Magazine, 36, 522529.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London, 539 pp.CrossRefGoogle Scholar
Foley, J.A., Hughes, J.M. and Lange, D. (1997) The atomic arrangement of brackebuschite, redefined as Pb2(Mn3+,Fe3+)(VO4)2(OH), and comments on Mn3+octahedra. The Canadian Mineralogist, 35, 10271033.Google Scholar
González del Tánago, J., La Iglesia, Á., Rius, J. and Fernández Santín, S. (2003) Calderónite, a new lead-iron-vanadate of the brackebuschite group. American Mineralogist, 88, 17031708.CrossRefGoogle Scholar
Harlow, G.E., Dunn, P.J. and Rossman, G.R. (1984) Gamagarite: a re-examination and comparison with brackebuschite-like minerals. American Mineralogist, 69, 803806.Google Scholar
Hofmeister, W. and Tillmanns, E. (1978) Strukturelle Untersuchungen an Arsenbrackebuschit. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 153163.CrossRefGoogle Scholar
Kampf, A.R., Adams, P.M., Nash, B.P. and Marty, J. (2015) Ferribushmakinite, Pb2Fe3+(PO4)(VO4)(OH), the Fe3+ analogue of bushmakinite from the Silver Coin mine, Valmy, Nevada. Mineralogical Magazine, 79, 661669.CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, 86-748.Google Scholar
Libowitzky, E. (1999) Correlation of OH stretching frequencies and O—H…0 hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Matsubara, S., Miyawaki, R., Yokoyama, K., Shimizu, M. and Imai, H. (2004) Tokyoite, Ba2Mn3+(VO4)2(OH), a new mineral from the Shiromaru mine, Okutama, Tokyo, Japan. Journal of Mineralogical and Petrological Sciences, 99, 363367.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Moore, P.B., Irving, A.J. andKampf, A.R. (1975) Foggite, CaAl(OH)2(H2O)[PO4]; goedkinite, (Sr,Ca)2Al(OH) [PO4]2; and samuelsonite (Ca,Ba)Fe22 +Mn22 +Ca8 Al2(OH)2[PO4]10: Three new species from the Palermo No. 1 Pegmatite, North Groton, New Hampshire. American Mineralogist, 60, 957964.Google Scholar
Moura, M.A., Botelho, N.F., Carvalho de Mendonca, E (2007) The indium-rich sulfides and rare arsenates of the mineralized Mangabeira A-type granite, Central Brazil. The Canadian Mineralogist, 45, 485496.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998a) Experimental and theoretical vibrational spectroscopic evaluation of arsenate coordination in aqueous solutions and solids. Geochimica et Cosmochimica Acta, 62, 32853300.CrossRefGoogle Scholar
Myneni, S.C.B., Traina, S.J., Waychunas, G.A. and Logan, T.J. (1998b): Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochimica et Cosmochimica Acta, 62, 34993514.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York, 432 pp.Google Scholar
Nichols, M.C. (1966) The structure of tsumebite. American Mineralogist, 51, 267267.Google Scholar
Pekov, I.V (2007) New minerals from former Soviet Union countries, 1998—2006: new minerals approved by the IMA Commission on New Minerals and Mineral Names. Mineralogical Almanac, 11, 951.Google Scholar
Pekov, I.V., Kleimenov, D.A., Chukanov, N.V., Yakubovich, O.V., Massa, W., Belakovskiy, D.I. and, Pautov, L.A. (2002) Bushmakinite Pb2Al(PO4)(VO4) (OH), a new mineral of the brackebuschite group from oxidized zone of Berezovskoye gold deposit, the Middle Urals. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 131(2) 6271 [in Russian].Google Scholar
Pouchou, J.L. and Pichoir, E (1984) A new model for quantitative analysis: Part I. Application to the analysis of homogeneous samples. La Recherche Aerospatiale, 3, 1338.Google Scholar
Pouchou, J.L. and Pichoir, E (1985) ‘PAP’ j(ρZ) correction procedure for improved quantitative micro-analysis. Pp. 104106 in: Microbeam Analysis (J.T Armstrong, editor). San Francisco Press, San Francisco, USA.Google Scholar
Rammelsberg, C. (1880) Ueber die vanadinerze aus dem Staat Córdoba in Argentinien. Zeitschrift der Deutschen Geologischen Gesellschaft, 32, 708713.Google Scholar
Robinson, K., Gibbs, G.V and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rosicky, V (1912) Preslit, ein neues Mineral von Tsumeb in Deutsch-Südwestafrika. Zeitschrift für Krystallographie und Mineralogie, 51, 521526.Google Scholar
Roth, P. (2007) Bearthite. Pp. 4445 in: Minerals First Discovered in Switzerland and Minerals Named After Swiss Individuals. Kristallografik Verlag, Achberg, Germany, 239 pp.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Spencer, L.J. (1913) A (sixth) list of new mineral names. Mineralogical Magazine, 16, 352378.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables. Chemical Structural Mineral Classification System. 9th Edition. E. Schweizerbart, Ed., Stuttgart (Germany), 870 pp.Google Scholar
Vésignié, J.P.L. (1935) Présentation d'échantillons. Bulletin de la Société Française de Minéralogie, 58, 45.Google Scholar
Williams, S.A. (1973) Heyite, Pb5Fe2(VO4)2O4, a new mineral from Nevada. Mineralogical Magazine, 39, 6568.CrossRefGoogle Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Yakubovich, O.V., Massa, W and Pekov, I.V (2002) Crystal structure of the new mineral bushmakinite, Pb2﹛(Al,Cu)[PO4][(V,Cr,P)O4](OH)﹜. Doklady Earth Sciences, 382, 100105 [in Russian].Google Scholar
Yvon, K., Jeitschko, W and Parthé, E. (1977) LAZY PULVERIX, a computer program, for calculating Xray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 7374.CrossRefGoogle Scholar
Zubkova, N.V., Pushcharovsky, D.Y., Giester, G., Tillmanns, E., Pekov, I.V. and Kleimenov, D.A. (2002) The crystal structure of arsentsumebite, Pb2Cu[(As,S)O4]2(OH). Mineralogy and Petrology, 75, 7988.CrossRefGoogle Scholar
Supplementary material: File

Cámara et al. supplementary material

Structure factors file

Download Cámara et al. supplementary material(File)
File 72.5 KB
Supplementary material: File

Cámara et al. supplementary material

Crystallographic information file

Download Cámara et al. supplementary material(File)
File 25.1 KB