Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T01:14:54.408Z Has data issue: false hasContentIssue false

Ardennite, tiragalloite and medaite: structural control of (As5+,V5+,Si4+)O4 tetrahedra in silicates

Published online by Cambridge University Press:  05 July 2018

M. Nagashima*
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
*

Abstract

Several silicate-minerals, such as ardennite – Mn2+4MgAl5[Si5(As5+,V5+)O22](OH)6, Z = 2, tiragalloite – Mn2+4[Si3As5+O12(OH)], Z = 4 and medaite – Mn2+6[Si5(V5+,As5+)O18(OH)], Z = 4 possess (V5+,As5+,P5+)O4 tetrahedra. Using electron-microprobe analysis (EMPA) and single-crystal X-ray diffraction methods, the crystal chemistry of ardennite from Salam-Château, Belgium and the Vernetto mine, Italy, tiragalloite from the Gambatesa mine, Italy, and medaite from the Molinello mine, Italy and the Fianel mine, Switzerland, were studied. Structure refinements converged to R1 values of 2.10–5.67%. According to chemical analysis, the Σ(As+V+P) content increases with decreasing Si content. Thus, Si replaces pentavalent cations in tetrahedral coordination. The (As5+,V5+,P5+,Si4+)O4 tetrahedra are categorized by their connections to SiO4 tetrahedra. The (As5+,V5+,P5+,Si4+)O4 tetrahedron of ardennite is isolated, and those of tiragalloite and medaite terminate a tetrahedral chain. The <T–O> of the isolated (As5+,V5+,P5+,Si4+)O4 tetrahedron shows a positive correlation with the mean ionic radius. For (As5+,V5+,P5+,Si4+)O4 tetrahedra with one TOT link, <TO> and mean ionic radius are also correlated. In addition, the longest bridging TO bond occurs between (As,V,P,Si)O4 and the adjacent SiO4 tetrahedron. The bridging O atom is over-bonded to satisfy the charge requirement of Σ(As+V+Si).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. and Donnay, G. (1971) Structural relations between pumpellyite and ardennite. Acta Crystallographica B, 27, 18711875.CrossRefGoogle Scholar
Araki, T. and Moore, P.B. (1981) Dixenite, : metallic clusters in an oxide matrix. American Mineralogist, 66, 12631273.Google Scholar
Barresi, A.A., Orlandi, P. and Pasero, M. (2007) History of ardennite and the new mineral ardennite-(V). European Journal of Mineralogy, 19, 581587.CrossRefGoogle Scholar
Basso, R. (1987) The crystal structure of palenzonaite, a new vanadate garnet from Val Graveglia (Northern Apennines, Italy). Neues Jahrbuch für Mineralogie Monatshefte, H3, 136144.Google Scholar
Basso, R. and Della Giusta, A. (1980) The crystal structure of a new manganese silicate. Neues Jahrbuch für Mineralogie Abhandlungen, 138, 333342.Google Scholar
Bastin, G.F., van Loo, F.J.J. and Heijlingers, H.J.M. (1984) Evaluation of the use of Gaussian ϕ(ρz) curves in quantitative electron probe microanalysis: A new optimization. X-ray Spectrometry, 13, 9197.CrossRefGoogle Scholar
Bastin, G.F., Heijlingers, H.J.M. and van Loo, F.J.J. (1986) A further improvement in the Gaussian ϕ(ρz) approach for matrix correction in quantitative electron probe microanalysis. Scanning, 8, 4567.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B, 47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica B, 41, 244247.CrossRefGoogle Scholar
Brugger, J. and Berlepsch, P. (1996) Description and crystal structure of fianelite, Mn2V(V,As)O7·2H2O, a new mineral from Fianel, Val Ferrera, Graubünden, Switzerland. American Mineralogist, 81, 12701276.CrossRefGoogle Scholar
Brugger, J. and Gieré, R. (2000) Origin and distribution of some trace elements in metamorphosed Fe-Mn deposits, Val Ferrera, Eastern Swiss Alps. The Canadian Mineralogist, 38, 10931119.CrossRefGoogle Scholar
Brugger, J., Armbruster, T., Meisser, N., Hejny, C. and Grobety, B. (2001) Description and crystal structure of turtmannite, a new mineral with a 68 Å period related to mcgovernite. American Mineralogist, 86, 14941505.CrossRefGoogle Scholar
Brugger, J., Berlepsch, P., Meisser, N. and Armbruster, T. (2003) Ansermetite, MnV2O6·4H2O, a new mineral species with V5+ in five-fold coordination from Val Ferrera, Eastern Swiss Alps. The Canadian Mineralogist, 41, 14231431.CrossRefGoogle Scholar
Brugger, J., Krivovichev, S., Meisser, N., Ansermet, S. and Armbruster, T. (2006) Scheuchzerite, Na(Mn,Mg)9[VSi9O28(OH)](OH)3, a new single-chain silicate. American Mineralogist, 91, 937943.CrossRefGoogle Scholar
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cenki-Tok, B. and Chopin, C. (2006) Coexisting calderite and spessartine garnets in eclogite-facies metacherts of the Western Alps. Mineralogy and Petrology, 88, 4768.CrossRefGoogle Scholar
Del Tánago, J.G., La Iglesia, Á, Rius, J. and Santí´n, S.F. (2003) Calderonite, a new lead-iron vanadate of the brackebuschite group. American Mineralogist, 88, 17031708.CrossRefGoogle Scholar
Donnay, G. and Allmann, R. (1968) Si3O10 groups in the crystal structure of a rdennite . Acta Crystallographica B, 24, 845855.CrossRefGoogle Scholar
Filatov, S.K., Krivovichev, S.V., Burns, P.C. and Vergasova, L.P. (2004) Crystal structure of filatovite, K[(Al,Zn)2(As,Si)2O8], the first arsenate of the feldspar group. European Journal of Mineralogy, 16, 537543.CrossRefGoogle Scholar
Franks, F., editor. (1973) Water: A comprehensive treatise, vol. 2. Plenum, New York, 684 pp.Google Scholar
Gramaccioli, C.M., Griffin, W.L. and Mottana, A. (1979 a) Dati preliminary su un probabile nuovo minerale nella miniera di Molinello. Rendiconti Società Italiana di Mineralogia e Petrologia. 35, 145149. (in Italian with English abstract).Google Scholar
Gramaccioli, C.M., Pilati, T. and Liborio, G. (1979 b) Structure of a manganese(II) arsenatorisilicate, Mn4[AsSi3O12(OH)]: The presence of a new tetrapolyphospate-like anion . Acta Crytallographica B, 35, 22872291.CrossRefGoogle Scholar
Gramaccioli, C.M., Griffin, W.L., Liborio, G. and Mottana, A. (1980 a) Un altro interessante minerale nella miniera di Molinello (Genova). Rendiconti Società Italiana di Mineralogia e Petrologia, 36, 159163. (in Italian with English abstract).Google Scholar
Gramaccioli, C.M., Griffin, W.L. and Mottana, A. (1980 b) Tiragalloite, Mn4[AsSi3O12(OH)], a new mineral and the first example of arsenatotrisilicate. American Mineralogist, 65, 947952.Google Scholar
Gramaccioli, C.M., Liborio, G. and Pilati, T. (1981) Structure of medaite, Mn6[VSi5O18(OH)]: The presence of a new kind of heteropolysilicate anion. Acta Crystallographica B, 37, 19721978.CrossRefGoogle Scholar
Gramaccioli, C.M., Griffin, W.L. and Mottana, A. (1982) Medaite, Mn6[VSi5O18(OH)], a new mineral and the first example of vanadatopentasilicate ion. American Mineralogist, 67, 8589.Google Scholar
Grice, J.D. and Dunn, P.J. (1994) Johninnesite: Crystal-structure determination and its relationship to other arsenosilicates. American Mineralogist, 79, 991995.Google Scholar
Momma, K. and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Nagashima, M. and Armbruster, T. Saneroite: chemical and structural variations of a manganese pyroxenoid. European Journal of Mineralogy, (in press).Google Scholar
Nakao, T., Fujiwara, T., Matsubara, S. and Miyawaki, R. (2005) Tiragalloite from the Yamato mine, Amami- Ohshima Island, Kagoshima Prefecture, Japan. Abstracts for Annual Meeting of the Mineralogical Society of Japan, 129. (in Japanese with English abstract).Google Scholar
Nyfeler, D. and Armbruster, T. (1998) Silanol groups in minerals and inorganic compounds. American Mineralogist, 83, 119125.CrossRefGoogle Scholar
Pasero, M. and Reinecke, T. (1991) Crystal chemistry, HRTEM analysis and polytypic behaviour of ardennite. European Journal of Mineralogy, 3, 819830.CrossRefGoogle Scholar
Pasero, M., Reinecke, T. and Fransolet, A.-M. (1994) Crystal structure refinements and compositional control of Mn-Mg-Ca ardennites from the Belgian Ardennes, Greece, and the Western Alps. Neues Jahrbuch für Mineralogie Abhandlungen, 166, 137167.Google Scholar
Peacor, D.R. (1980) The crystal structure of kolicite, Mn7(OH)4[As2Zn4Si2O16(OH)4]. American Mineralogist, 65, 483487.Google Scholar
Raade, G., Kolitsch, U. and Husdal, T.A. (2006) Si-rich bergslagite from a granitic pegmatite at Tennvatn, nor th Norway. Geologiska Föreningen Förhandlingar, 128, 6568.Google Scholar
Schneider, P. and Tropper, P. (2009) The most P-rich olivine on earth so far: The formation of extremely phosphorous olivine in prehistoric burning slags from the Goldbichl, Igls (Tyrol, Austria). Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 155 (Abstract).Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97. A program for crystal structure refinement. University of Göttingen, Göttingen, Germany.Google Scholar
Tropper, P., Recheis, A. and Konzett, J. (2004) Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistroric sacrificial burning site (Ötz Valley, Tyrol, Austria). European Journal of Mineralogy, 16, 631640.CrossRefGoogle Scholar
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary table S1

Download Nagashima and Armbruster supplementary material(File)
File 34.3 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S2

Download Nagashima and Armbruster supplementary material(File)
File 36.9 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S3

Download Nagashima and Armbruster supplementary material(File)
File 30.7 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S4

Download Nagashima and Armbruster supplementary material(File)
File 36.9 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S5

Download Nagashima and Armbruster supplementary material(File)
File 40.4 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S6

Download Nagashima and Armbruster supplementary material(File)
File 28.7 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S7

Download Nagashima and Armbruster supplementary material(File)
File 29.7 KB
Supplementary material: File

Nagashima and Armbruster supplementary material

Supplementary Table S8

Download Nagashima and Armbruster supplementary material(File)
File 40.4 KB