Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:13:31.826Z Has data issue: false hasContentIssue false

An application of the Rietveld refinement method to the mineralogy of a bauxite-bearing regolith in the Lower Amazon

Published online by Cambridge University Press:  28 February 2018

Leonardo Boiadeiro Ayres Negrão*
Affiliation:
Instituto de Geociências, Universidade Federal do Pará, Belém-PA, Brazil
Marcondes Lima da Costa
Affiliation:
Instituto de Geociências, Universidade Federal do Pará, Belém-PA, Brazil
Herbert Pöllmann
Affiliation:
Institut für Geowissenschaften und Geographie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
Axel Horn
Affiliation:
Institut für Geowissenschaften und Geographie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
*

Abstract

A comparison of Rietveld refinement results for a bauxite-bearing regolith and its clayey cover in the Amazon region was made with stoichiometric calculations from chemical analysis and partly from thermogravimetric results. For this investigation a profile in the bauxite-bearing regolith occurrence in the ALCOA bauxite mine at Juruti, Brazil was studied. The different minerals, their compositions and their low crystallinity in the different horizons were investigated and the contents determined. It is evident that some minerals show several generations and some chemical composition changes that must be included in the Rietveld refinement. Al-rich hematites and goethites are common along the bauxite profile. Amorphous contents were determined with rutile added as an internal standard and shown to have gibbsite- or kaolinite-like composition. The minerals could be quantified in the different horizons and the difficulties were mainly related to variable crystalline aspects of the phases. Rietveld refinement can be a powerful tool in bauxite prospecting, quality control and during mining and beneficiation of ore minerals using the adapted refinement strategies.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Karen Hudson-Edwards

References

Amigó, J.M., Batista, J., Sans, A., Signes, M. and Serrano, J. (1994) Crystallinity of Lower Cretaceous kaolinites of Teruel (Spain). Applied Clay Science, 9, 5169.CrossRefGoogle Scholar
Aparicio, P. and Galán, E. (1999) Mineralogical interference on crystallinity index measurements. Clays and Clay Minerals, 47, 1227.CrossRefGoogle Scholar
Bárdossy, G. and Aleva, G.J.J. (1990) Lateritic Bauxites. Developments in Economic Geology. Elsevier, Amsterdam, 624 pp.Google Scholar
Bray, E.L. (2016) Bauxite and Alumina. Mineral commodity summaries 2016, U.S. Geological Survey, Reston, Virginia, USA.Google Scholar
Brindley, G.W. and Choe, J.O. (1961) The reaction series, gibbsite → chi alumina → kappa alumina → corundum. American Mineralogist, 46, 771785.Google Scholar
Cao, S., Kang, F., Yang, X., Zhen, Z., Liu, H., Chen, R. and Wei, Y. (2015) Influence of Al substitution on magnetism and adsorption properties of hematite. Journal of Solid State Chemistry, 228, 8289.Google Scholar
Colombo, C. and Violante, A. (1996) Effect of time and temperature on the chemical composition and crystallization of mixed iron and aluminum species. Clays and Clay Minerals, 44(1), 113120.Google Scholar
Costa, M.L., Silva Cruz, G., Faria, H.F.A. and Pöllmann, H. (2014) On the geology, mineralogy and geochemistry of the bauxite-bearing regolith in the lower Amazon basin: Evidence of genetic relationships. Journal of Geochemistry Exploration, 146, 5874.CrossRefGoogle Scholar
Cruz, G.S. (2011) Bauxita, horizonte nodular e cobertura argilosa da região de Paragominas e Juruti, estado do Pará. Dissertation, Universidade Federal do Pará, Brazil, 93 pp.Google Scholar
Fazey, P.G., O'Connor, B.H. and Hammond, L.C. (1991) X-ray powder diffraction characterization of synthetic aluminum substituted goethite. Clays and Clay Minerals, 39, 248253.Google Scholar
Feret, F.R. (2013) Selected applications of X-ray diffraction quantitative analysis for raw materials of the aluminum industry. Powder Diffraction, 8, 112123.CrossRefGoogle Scholar
Fitzpatrick, R.W. and Schwertmann, U. (1982) Al-substituted goethite – an indicator of pedogenic and other weathering environments in South Africa. Geoderma, 27, 335347.Google Scholar
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.Google Scholar
Horn, M., Schwerdtfeger, C.F. and Meagher, E.P. (1972) Refinement of the structure of anatase at several temperatures. Zeitschrift für Kristallographie, 136, 273–81.Google Scholar
Howard, C.J., Sabine, T.M. and Dickson, F. (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallographica, 47, 462468.CrossRefGoogle Scholar
Hughes, J.C. and Brown, G. (1979) A crystallinity index for soil kaolins and its relation to parent rock, climate and soil nature. Journal of Soil Scince, 30, 557563.Google Scholar
König, U., Angélica, R.S., Norberg, N. and Gobbo, L. (2012) Rapid X-ray diffraction (XRD) for grade control of bauxites. ICSOBA Proceedings, 19, 11pp.Google Scholar
Kotschoubey, B., Calaf, J.M.C, Lobato, A.C.C., Leite, A.S. and Azevedo, C.H.D. (2005) Caracterização e gênese dos depósitos de bauxita da Província Bauxitífera da Região de Paragominas, noroeste da Bacia do Grajaú, nordeste do Pará/oeste do Maranhão. Pp. 687782 in: Caracterização de Depósitos Minerais em Distritos Mineiros da Amazônia (Marini, , editors). DNPM – CT/Mineral – ADIMB, Brasília.Google Scholar
Li, D., O'Connor, B.H., Low, I.M., van Riessen, A. and Toby, B.H. (2006) Mineralogy of Al-substituted goethites. Powder Diffraction, 21, 289299.Google Scholar
Liètard, O. (1977) Contribution à l’étude des Propiétés Phisicochimiques, Cristallographiques et Morphologiques des Kaolins. PhD thesis, Nancy, France. 345 p.Google Scholar
Lucas, Y. (1997) The bauxite of Juruti. Pp 107133 in: Brazilian Bauxites (A. Carvalho, , editor). USP/FAPESP/ORSTOM, São Paulo, Brazil.Google Scholar
Mendes, A.C., Truckenbrodt, W. and Nogueira, A.C. (2012) Análise faciológica da Formação Alter do Chão (Cretáceo, Bacia do Amazonas), próximo à cidade de Óbidos, Pará, Brasil. Revista Brasileira de geociências, 42, 3957.CrossRefGoogle Scholar
Mercury, J.M., Pena, P., De Aza, A. H., Sheptyakov, D. and Turrillas, X. (2006) On the decomposition of synthetic gibbsite studied by neutron thermodiffractometry. Journal of the American Ceramic Society, 89, 37283733.Google Scholar
Mestdagh, M.M., Vielvoye, L. and Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15, 112.Google Scholar
Neumann, R., Avelar, A.N. and Costa, G.M. (2014) Refinement of the isomorphic substitutions in goethite and hematite by the Rietveld method, and relevance to bauxite characterization and processing. Minerals Engineering, 55, 8086.Google Scholar
Norby, P. (1997) Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld refinement. Journal of Applied Crystallography, 30, 2130.CrossRefGoogle Scholar
Norrish, K. and Taylor, R.M. (1961) The isomorphous replacement of iron by aluminum in soil goethites. Journal of Soil Science, 12, 294306.CrossRefGoogle Scholar
Oliveira, S.B., Costa, M.L. and Prazeres Filho, H. (2016) The lateritic bauxite deposit of Rondon do Pará: A new giant deposit in the Amazon region, Northern Brazil. Economic Geology, 111, 12771290.Google Scholar
Paz, S.P.A., Angélica, R.S. and Scheller, T. (2012) X-ray diffraction studies of kaolinites to support mineralogical quantification of high silica bauxites from the Brazilian Amazon region. ICSOBA Proceedings, 19, 17.Google Scholar
Plançon, A. and Zacharie, C. (1990) An expert system for the structural characterization of kaolinites. Clay Minerals, 25, 249260.Google Scholar
Pinney, N. and Morgan, D. (2013) Ab initio study of structurally bound water at cation vacancy sites in Fe- and Al-oxyhydroxide materials. Geochimica et Cosmochimica Acta, 114, 94111.Google Scholar
Range, K.J. and Weiss, A. (1969) Über das Verhalten von Kaoliniti bei hohen Drücken. Berichte der Deutschen Keramischen Gesellschaft, 46, 231288.Google Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.Google Scholar
Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH)3. Zeitschrift für Kristallographie, 139, 129135.Google Scholar
Sadykov, V.A., Isupova, L.A., Tsybulya, S.V., Cherepanova, S.V., Litvak, G.S., Burgina, E.B., Kustova, G.N., Kolomiichuk, V.N., Ivanov, V.P., Paukshtis, E.A., Golovin, A.V. and Avvakumov, E.G. (1996) Effect of mechanical activation on the real structure and reactivity of iron (III) oxide with corundum-type structure. Journal of Solid State Chemistry, 123, 191202.CrossRefGoogle Scholar
Schulze, D.G. (1984) The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them. Clays and Clay Minerals, 32, 3644.Google Scholar
Schulze, D.G. and Schwertmann, U. (1984) The influence of aluminium on iron oxides: X Properties of Al- substituted goethites. Clay Minerals, 19, 521539.Google Scholar
Schwertmann, U. and Carlson, L. (1994) Aluminum influence on iron oxides: XVII. Unit-Cell parameters and aluminum substitution of natural goethites. Soil Science Society of America Journal, 58, 256261.CrossRefGoogle Scholar
Silva, A.P.J., Lopes, R.C., Vasconcelos, A.M. and Bahia, R.B.C. (2003) Bacias Sedimentares Paleozóicas e Meso-cenozóicas Interiores. Pp. 5385 in: Geologia, Tectônica e Recursos Minerais do Brasil (Bizzi, , editors). CPRM, Brasília.Google Scholar
Sombroek, W.G. (1966) Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region. Centre for Agricultural Publications and Documentation, Wageningen, The Netherlands, 292 pp.Google Scholar
Stanjek, H. and Schwertmann, U. (1992) The influence of aluminum on iron oxides: Part XVI, Hydroxyl and aluminum substitution in synthetic hematites. Clays and Clay Minerals, 40, 347354.CrossRefGoogle Scholar
Stoch, L. (1974) Mineraly Ilaste (“Clay Minerals”). Geological Publishers, Warsaw [pp 186–193].Google Scholar
Thiel, R. (1963) Zum System a-FeOOH-a-AlOOH. Zeitschrift für anorganische und allgemeine Chemie, 326, 7078.Google Scholar
Trolard, F. and Tardy, Y. (1989) A model of Fe(3+)kaolinite, Al(3+)-Goethite, Al(3+)-Hematite equilibria in laterites. Clay Minerals, 24, 121.Google Scholar
Toby, H.B. (2006) R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21, 6770.Google Scholar
Yeskis, D., Koster van Groos, A. and Guggenheim, S. (1985) The dehydroxylation of kaolinite. American Mineralogist, 70, 159164.Google Scholar