Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T20:06:27.355Z Has data issue: false hasContentIssue false

Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, a new mineral from the Severo-Kambalny geothermal field, Kamchatka, Russia

Published online by Cambridge University Press:  15 May 2018

Elena S. Zhitova*
Affiliation:
Department of Crystallography, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia Geothermal laboratory, Institute of Volcanology and Seismology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatsky 683006, Russia
Oleg I. Siidra
Affiliation:
Department of Crystallography, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk region, 184200, Russia
Dmitry I. Belakovsky
Affiliation:
Fersman Mineralogical Museum, Leninsky prospect 18-2, Moscow 117071, Russia
Vladimir V. Shilovskikh
Affiliation:
Resource Center, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
Anton A. Nuzhdaev
Affiliation:
Geothermal laboratory, Institute of Volcanology and Seismology, Russian Academy of Sciences, Bulvar Piypa 9, Petropavlovsk-Kamchatsky 683006, Russia
Rezeda M. Ismagilova
Affiliation:
Department of Crystallography, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
*

Abstract

Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, is a new voltaite-group mineral. The mineral was discovered at the Severo-Kambalny (North-Kambalny) geothermal field, Kambalny volcanic ridge, Southern Kamchatka, Russia. Ammoniovoltaite forms at ~100°C around geothermal gas/steam vents in association with alunogen, tschermigite and pyrite. Crystals of ammoniovoltaite have euhedral habit, are up to 50 µm in size and grow on alunogen plates. Ammoniovoltaite is black with vitreous lustre, opaque, brittle and water-soluble. Neither cleavage nor parting is found, the fracture is conchoidal. The mineral is isotropic, with the refractive index n = 1.602(2) (589 nm). Infrared spectra contain an absorption band at 1433 cm–1 distinctive for the ammonium ion. The chemical composition is (iron content is given in accordance with Mössbauer data, H2O calculated from a crystal-structure refinement, wt.%): FeO 13.26, Fe2O3 11.58, MgO 2.33, ZnO 0.04, Al2O3 2.74, SO3 47.46, K2O 0.19, CaO 0.11, (NH4)2O 2.96, H2O 16.03, total 96.70. The empirical formula based on S = 12 atoms per formula unit is [(NH4)1.88K0.08Ca0.04]Σ2.00(Fe2+3.74Mg1.17Fe3+0.05Zn0.01)Σ4.97(Fe3+2.89Al0.09)Σ2.98Al1.00(SO4)12.00(H2O)18.00. The crystal structure has been refined to R1 = 0.031 and 0.030 on the basis of 1217 and 1462 unique reflections with I >2σ(I) collected at 100 K and room temperature, respectively. Ammoniovoltaite is the ammonium analogue of voltaite. The mineral is cubic, Fd$\bar{3}$c, a = 27.250(1) Å and V = 20234(3) Å3 (at 100 K); and a = 27.322(1) Å and V = 20396(3) Å3 (at RT), with Z = 16. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.67 (74) (022), 7.90 (56) (222), 5.58 (84) (422), 3.560 (100) (731), 3.418 (100) (008) and 2.8660 (37) (931). A brief review of ammonium minerals from various volcanically active geological environments is given.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony Kampf

References

Bechi, E. (1854) Analysis of several native borates: larderellite, (new species). American Journal of Science, 67, 129130.Google Scholar
Beveridge, D. and Day, P. (1979) Charge transfer in mixed valence solids. Part 9. Preparation, characterization, and optical spectroscopy of the mixed valence mineral voltaite [aluminum pentairon(II) triiron(III) dipotassium dodecasulfate 18-hydrate] and its solid solutions with cadmium(II). Journal of the Chemical Society, Dalton Transactions, 10, 648653.Google Scholar
Bridge, P.J. and Robinson, B.W. (1983) Niahite – a new mineral from Malaysia. Mineralogical Magazine, 47, 7980.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, CXLVI, 104107 [in Russian with English abstract].Google Scholar
Bruker-AXS (2014) APEX2. Version 2014.11–0. Madison, Wisconsin, USAGoogle Scholar
Bruker-AXS (2009) Topas V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany.Google Scholar
Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano – Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, 344 pp. [in Italian].Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht-Heilderberg-New York-London, 1726 pp.Google Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Pekov, I.V., Belakovskiy, D.I. and Britvin, S.N. (2015) Möhnite, (NH4)K2Na(SO4)2, a new guano mineral from Pabellon de Pica, Chile. Mineralogy and Petrology, 109, 643648.Google Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Möhn, G., Rusakov, V.S., Pekov, I.V., Scholz, R., Eremina, T.A., Belakovskiy, D.I. and Lorenz, J.A. (2016) Magnesiovoltaite, K2Mg2+5Fe3+3Al[SO4]12·18H2O, a new mineral from the Alcaparrosa mine, Antofagasta region, Chile. European Journal on Mineralogy, 28, 100510017.Google Scholar
Demartin, F., Castellano, C. and Campostrini, I. (2013) Aluminopyracmonite, (NH4)3Al(SO4)3, a new ammonium aluminium sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 77, 443451.Google Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009 a) Brontesite, (NH4)3PbCl5, a new product of fumarolic activity from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 12371243.Google Scholar
Demartin, F., Campostrini, I. and Gramaccioli, C.M. (2009 b) Panichiite, natural ammonium hexachlorostannate(IV), (NH4)2SnCl6, from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 367372.Google Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010 a) Adranosite, (NH4)4NaAl2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315321.Google Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010 b) Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307313.Google Scholar
Demartin, F., Campostrini, I., Castellano, C. and Gramaccioli, C.M. (2012) Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy: A first example of the [Bi2Cl10]4− anion. American Mineralogist, 97, 14461451.Google Scholar
Demartin, F., Castellano, C. and Campostrini, I. (2014) Therasiaite, (NH4)3KNa2Fe2+Fe3+(SO4)3Cl5, a new sulfate chloride from La Fossa Crater, Vulcano, Aeolian islands, Italy. Mineralogical Magazine, 78, 203213.Google Scholar
Demartin, F., Castellano, C. and Gramaccioli, C.M. (2015) Campostriniite, (Bi3+,Na)3(NH4,K)2Na2(SO4)6·H2O, a new sulfate isostructural with görgeyite, from La Fossa Crater, Vulcano, Aeolian Islands, Itlay. Mineralogical Magazine, 79, 10071018.Google Scholar
Dunning, G.E. and Cooper, J.F. (1993) History and minerals of the Geysers Sonoma County, California. The Mineralogical Records, 24, 339354.Google Scholar
Ertl, A., Dyar, M.D., Hughes, J.M., Brandstätter, F., Gunter, M.E. and Prem, M. (2008) Pertlikite, a new tetragonal Mg-rich member of voltaite group from Madeni Zakh, Iran. The Canadian Mineralogist, 46, 661669.Google Scholar
Fedotov, S.A. and Markhinin, Ye.K. (editors) (1983) The Great Tolbachik Fissure Eruption: geological and geophysical data 1975–1976. Cambridge. Cambridge University Press, Cambridge, UK.Google Scholar
Gangé, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Garavelli, C.L. (1964) Mohrite: un nuovo minerale della zona borifera toscana. Atti della Accademia Nazionale dei Lincei. Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, 36, 524533.Google Scholar
Garavelli, A. and Vurro, F. (1994) Barberiite, NH4BF4, a new mineral from Vulcano, Aeolian Islands, Italy. American Mineralogist, 79, 381384.Google Scholar
Garavelli, A., Mitolo, D. and Pinto, D. (2012) Thermessaite-(NH4), IMA 2011-077. CNMNC Newsletter No. 12, February 2012. Mineralogical Magazine, 76, 152.Google Scholar
Garavelli, A., Mitolo, D., Pinto, D. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477.Google Scholar
Gossner, B. and Bäuerlein, T. (1930) Hydrated sulfates containing three metals. Berichte der Deutschen Chemischen Gesellschaft, 63B, 21512155.Google Scholar
Gossner, B. and Bauerlein, T. (1933) Optical anomalies: voltaite-like sulfates. Neues Jahrbuch für Geologie and Paläontologie, 66A, 140.Google Scholar
Gossner, B. and Besslein, J. (1934) Hydrated sulfates of three metals. Centralblatt für Mineralogie, Geologie und Paleontologie, 1934A, 358364.Google Scholar
Gossner, B. and Fell, E. (1932) Sulfates of the voltaite type. Berichte der Deutschen Chemischen Gesellschaft, 65B, 393395.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy & Geochemistry, 40. The Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Kalacheva, E.G., Rychagov, S.N., Nuzhdaev, A.A. and Koroleva, G.P. (2016) The geochemistry of steam hydrothermal occurences in the Koshelev volcanic massif, southern Kamchatka. Journal of Volcanology and Seismology, 10, 188202.Google Scholar
Kampf, A.R., Richards, R.P., Nash, B.P., Murowchick, J.B., Rakovan, J.F. (2016) Carlsonite, (NH4)5Fe3+3O(SO4)6·7H2O, and huizingite-(Al), (NH4)9Al3(SO4)8(OH)2·4H2O, two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio. American Mineralogist, 101, 20952107.Google Scholar
Krohn, M.D., Kendall, C., Evans, J.R. and Fries, T.L. (1993) Relations of ammonium minerals at several hydrothermal systems in the western U.S. Journal of Volcanology and Geothermal Research, 56, 401403.Google Scholar
Li, W., Chen, G. and Sun, S. (1987) Zincovoltaite – a new sulphate mineral. Acta Mineralogica Sinica, 7, 307321.Google Scholar
Maclvor, R.W.E. (1887) On Australian bat guano and some minerals occurring therein. The Chemical News, 55, 215216.Google Scholar
Majzlan, J., Schlicht, H., Wierzbicka-Wieczorek, M., Giester, G., Pöllmann, H., Brömme, B., Doyle, S., Buth, G. and Koch, C.B. (2013) A contribution to the crystal chemistry of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous anisotropy. Mineralogy and Petrology, 107, 221233.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Mascagni, P. (1779) Dei lagoni del senese e del volterrano. Sienna, Italy.Google Scholar
Mereiter, K. (1972) Die Kristallstruktur des Voltaits, K2Fe2+5Fe3+3Al[SO4]12·18H2O. Tschermaks Mineralogische Petrographische Mitteilungen, 18, 185202 [in German].Google Scholar
Mitolo, D., Demartin, F., Garavelli, A., Campostrini, I., Pinto, D., Gramaccioli, C.M., Acquafredda, P. and Kolitsch, U. (2013) Adranosite-(Fe), (NH4)4NaFe2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 51, 5766.Google Scholar
Nekhoroschev, A.S. (1959) Hydrothermal activity of Kambalny ridge, Southern Kamchatka. Bulletin of Vulcanological station, 28, 2333 [in Russian].Google Scholar
Ogorodova, A.S., Naboko, S.I., Fedotov, S.A. and Vinogradov, V.N. (1971) Trace elements in modern hydrothermally-altered rocks and minerals on the example of hydrothermal field (Yuzhno-Kambalny and Pauzhetskaya geothermal systems). Report of the Institute of Volcanology (Far-eastern branch of the USSR Academy of Sciences), Department of Postmagmatic Processes. Petropavlovsk-Kamchatsky, 141 [in Russian].Google Scholar
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, II, 101–107. John Wiley and Sons, Inc., New York.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 31–75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Rychagov, S.N., Sokolov, V.N. and Chernov, M.S. (2010) Hydrothermal clays as a high dynamical colloid-disperse mineralogical-geochemical system. Doklady Akademii Nauk, 435, 806809.Google Scholar
Rychagov, S.N., Nuzhdaev, A.A. and Stepanov, I.I. (2014) Mercury as an indicator of modern ore-forming gas-hydrothermal systems, Kamchatka. Geochemistry International, 52, 131143.Google Scholar
Rychagov, S.N., Sergeeva, A.V. and Chernov, M.S. (2017) Mineral specific associations of hydrothermal clays (Southern Kamchatka). Doklady Akademii Nauk, 477, 16.Google Scholar
Sajó, I.E. (2012) Characterization of synthetic voltaite analogues. European Chemical Bulletin, 1(1–2), 3536.Google Scholar
Scacchi, A. (1873) Contribuzioni mineralogiche per servire alla storia dell’ incendio Vesuviano del Mese di Aprile, 1872. Part 2., Reale Accademia delle Scienze Fisische e Matematiche Naples, 169 [in Italian].Google Scholar
Schaller, W.T. (1933) Ammonioborite, a new mineral. American Mineralogist, 18, 480492.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, A71, 38.Google Scholar
Szakáll, S., Sajó, I., Fehér, B. and Bigi, S. (2012) Ammoniomagnesiovoltaite, a new voltaite-related mineral species from Pécs-Vasas, Hungary. The Canadian Mineralogist, 50, 6572.Google Scholar
Volynets, V.F., Zadorozhnyy, I.L. and Florenskiy, K.P. (1967) Isotopic composition of nitrogen in the Earth's crust. Geokhimiya, 5, 587593.Google Scholar
Yang, H., Martinelli, L., Tasso, F., Sprocati, A.R., Pinzari, F., Liu, Z., Downs, R.T. and Sun, H.J. (2014) A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2·14H2O. American Mineralogist, 99, 17611766.Google Scholar
Zhitova, E.S., Siidra, O.I., Shilovskikh, V.V., Belakovsky, D.I., Nuzhdaev, A.A. and Ismagilova, R.M. (2017) Ammoniovoltaite, IMA 2017-022. CNMNC Newsletter No. 38, August 2017, page 1035; Mineralogical Magazine, 81, 10331038.Google Scholar
Supplementary material: File

Zhitova et al. supplementary material

Supplementary data

Download Zhitova et al. supplementary material(File)
File 144.8 KB