Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T09:22:14.124Z Has data issue: false hasContentIssue false

Age and petrogenesis of the Qassiarsuk carbonatite-alkaline silicate volcanic complex in the Gardar rift, South Greenland

Published online by Cambridge University Press:  05 July 2018

Tom Andersen*
Affiliation:
Laboratory of Isotope Geology, Mineralogical-Geological Museum, Sars gate 1, N-0562 Oslo, Norway

Abstract

The Qassiarsuk (formerly spelled Qagssiarssuk) complex is located in a roughly E–W trending graben structure between Qassiarsuk village and Tasiusaq settlement in the northern part of the Precambrian Gardar rift, South Greenland. The complex comprises a sequence of alkaline silicate tuffs and extrusive carbonatites interlayered with sandstones, and their subvolcanic equivalents, which represent possible feeders for the extrusive rocks. The Rb-Sr, Sm-Nd and Pb isotopic characteristics of 65 samples of extrusive carbonatite- and silicate tuffs and carbonatite diatremes have been determined by mass spectrometry. The Qassiarsuk complex can be dated to c. 1.2 Ga by Rb-Sr and Pb-Pb isochrons on whole-rocks and mineral separates, agreeing with previous isotopic ages for the volcanic rocks of the Eriksfjord formation in the Eriksfjord area of the Gardar rift, but not with previous, indirect age estimates of >1.31 Ga for assumed Eriksfjord equivalents in the Motzfeldt area further east. Recalculated isotopic compositions at 1.2 Ga indicate that the Qassiarsuk carbonatite- and alkaline-silicate magmas were comagmatic and derived from a depleted mantle source (εNd>4, εSr<−13, time-integrated, single- stage 238U/204Pb ≤ 7.4). The mantle-derived magmas were contaminated with crustal material, equivalent to the local, pre-Gardar granites and gneisses and sediments derived from these. The crustal component has a depleted mantle Nd model age of 2.1-2.6 Ga; at 1.2 Ga it was characterized by εSr = +76, εNd = −8.4, time-integrated, single- stage 238U/204Pb = 8.2−8.3. Strong decoupling of the Pb from the Sr and Nd isotopic systems suggests that the contamination happened only after carbonatitic and alkaline-silicate magmas had evolved from a common parent, by processes such as liquid immisicibility and/or fractional crystallization. Post-magmatic hydrothermal alteration (oxidation, hydration of mafic silicates, carbonatization of melilite) may have contributed further to the contamination of the carbonatite and alkaline silicate rocks of the Qassiarsuk complex.

Type
Intraplate Alkaline Magmatism
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaart, J.H. (1983) Geological map of Greenland, 1:100 000,. Narssarssuaq, 61V.3 Syd. Descriptive text. Grønlands Geologiske Undersøgelse, Copenhagen, 20 pp.Google Scholar
Andersen, T. (1983) Iron ores in the Fen central complex, Telemark (S. Norway): Petrography, chemical evolution and conditions of equilibrium. Norsk Geol. Tidsskr., 63, 73-82.Google Scholar
Andersen, T. (1984) Secondary processes in carbona-tites: petrology of ‘rødberg’ hematite-calcite-dolo-mite carbonatite) in the Fen central complex, Telemark (South Norway). Lithos, 17, 227-45.CrossRefGoogle Scholar
Andersen, T. (1986) Magmatic fluids in the Pen carbonatite complex, S.E. Norway. Evidence of mid-crustal fractionation from solid and fluid inclusions in apatite. Contrib. Mineral. Petrol., 93, 491-503.CrossRefGoogle Scholar
Andersen, T. (1987) Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: REE and isotopic evidence from the Fen complex, S.E. Norway. Chem. Geol., (Isotope Geosci. Sect.), 65, 147-66.CrossRefGoogle Scholar
Andersen, T. (1988) Evolution of peralkaline calcite carbonatite magma in the Fen complex, SE Norway. Lithos, 22, 99-112.CrossRefGoogle Scholar
Andersen, T. (1996a) Sr, Nd and Pb isotopic characteristics of the Alnö carbonatite complex, Sweden. Abstracts, The 22nd Nordic Geological Winter Meeting, Turku, Finland, 11.Google Scholar
Andersen, T. (1996b) Age and petogenesis of the Qassiarsuk carbonatite - alkaline silicate complex, South Greenland (abstract). Intraplate Alkaline Magmatism, Birmingham, 1996. Google Scholar
Andersen, T. and Munz, I.A. (1995) Radiogenic whole-rock lead in Precambrian metasedimentary gneisses from South Norway: Evidence for LILE mobility. Norsk Geol. Tidsskr. 75, 156–68.Google Scholar
Andersen, T. and Sundvoll, B. (1986) Strontium and neodymium isotopic composition of an early tinguaite (nepheline microsyenite) in the Fen complex, S.E. Norway: Age and petrogenetic implications. Norges geol. Unders. Bull., 409, 29-34.Google Scholar
Andersen, T. and Taylor, P.N. (1988) Lead isotope geochemistry of the Fen carbonatite complex, S.E. Norway: Age and petrogenetic implications. Geochim. Cosmochim. Acta, 52, 209-15.CrossRefGoogle Scholar
Barker, D.S. (1989) Field relations of carbonatites. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 38—69.Google Scholar
Bell, K. and Blenkinsop, J. (1989) Neodymium and Strontium isotope geochemistry of carbonatites. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 278300.Google Scholar
Blaxland, A.R., van Bremen, O., Emeleus, C.H. and Anderson, J.G. (1978) Age and origin of the major syenite centers in the Gardar province of South Greenland. Geol. Soc. Amer. Bull., 89, 231-44.2.0.CO;2>CrossRefGoogle Scholar
Boynton, W.V. (1984) Geochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (Henderson, P., ed.), Elsevier, 63—114 Google Scholar
Bruecner, H.K. and Rex, D.C. (1980) K-A and Rb-Sr geochronology and Sr isotopic study of the Alnö alkaline complex, northeastern Sweden. Lithos, 13, 111-9.CrossRefGoogle Scholar
Church, A.A. and Jones, A.P. (1995) Silicate-carbonate immiscibility at Oldoinyo Lengai. J. Petrol., 96, 869-89.CrossRefGoogle Scholar
Dahlgren, S. (1987) The satellitic intrusions in the Fen carbonatite alkaline rock province, Telemark, southeastern Norway. Unpublished Cand. Scient. Thesis, University of Oslo. 298 pp.Google Scholar
Dahlgren, S. (1993) Late Proterozoic and Carboniferous ultramafic magmatism of carbonatitic affinity in southern Norway. Lithos, 31, 141—54.CrossRefGoogle Scholar
Dawson, J.B. (1962) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature, 195, 1075—6.CrossRefGoogle Scholar
Dawson, J.B. (1989) Sodium carbonatite extrusions from Oldoinyo Lengai, Tanzania: implications for carbonatite complex genesis. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 255-77.Google Scholar
DePaolo, D.J. (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291, 193-6.CrossRefGoogle Scholar
Emeleus, C.H. and Upton, B.G. (1976) The Gardar Period in Southern Greenland. In Geology of Greenland, (Escher, A. and Watt, W.S., eds.), Geological Survey of Greenland, Copenhagen, 152-81.Google Scholar
Faure, G. (1977) Principles of Isotope Geology, 1st edition. J. Wiley and Sons, New York. 464 pp.Google Scholar
Faure, G. (1986) Principles of Isotope Geology, 2nd edition. J. Wiley and Sons, New York. 589 pp.Google Scholar
Jahn, B.-m. and Cuvellier, H. (1994) Pb-Pb and U-Pb geochronology of carbonate rocks: an assessment. Chem. Geol., 115, 125-51.CrossRefGoogle Scholar
Kalsbeek, F., Larsen, L.M. and Bondam, J. (1990) Geological map of Greenland, 1:500 000, Sydgrønland, sheet 1. Descriptive text. Grønlands Geologiske Undersøgelse, Copenhagen.Google Scholar
Keller, J. (1989) Extrusive carbonatites and their significance. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 7088.Google Scholar
Kjarsgaard, B.A. and Hamilton, D.L. (1988) Liquid immiscibility and the origin of alkali-poor carbonatite. Mineral. Mag., 52, 4355.CrossRefGoogle Scholar
Kjarsgaard, B.A. and Hamilton, D.L. (1989) The genesis of carbonatites. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, pp. 388404.Google Scholar
Knudsen, C. (1985) Apatite mineralization in carbonatite and ultramafic intrusions in Greenland. Final Report. Grønlands Geologiske Undersøgelse, Copenhagen, 176 pp.Google Scholar
Kwon, S.-T., Tilton, G.R. and Grunenfelder, M.H. (1989) Lead isotope relationships in carbonatites and alkalic complexes: an overview. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 360—387.Google Scholar
Le Bas, M.J. (1989) Diversification of carbonatite. In Carbonatites, Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 428—47.Google Scholar
Ludwig, K.R. (1991) ISOPLOT; a plotting and regression program for radiogenic-isotope data; version 2.53. U.S. Geol. Surv. Open File Report 91-445, 39 pp.CrossRefGoogle Scholar
Paslick, C.R., Halliday, A.N., Davies, G.R., Mezger, K. and Upton, B.G. (1993) Timing of Proterozoic magmatism in the Gardar Province, Southern Greenland. Geol. Soc. Amer. Bull., 105, 272-8.2.3.CO;2>CrossRefGoogle Scholar
Pearce, N.J.G. and Leng, M.J. (1996) The origin of carbonatites and related rocks from the Igaliko Dyke swarm, Gardar Province, South Greenland: field, geochemical and C-O-Sr-Nd isotope evidence. Lithos, 39, 21-40.CrossRefGoogle Scholar
Peterson, T.D. (1989a) Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo Lengai. Contrib. Mineral. Petrol., 101, 458-78.CrossRefGoogle Scholar
Peterson, T.D. (1989b) Peralkaline nephelinites. 2 Low pressure fractionation and the hypersodic lavas of Oldoinyo Lengai. Contrib. Mineral. Petrol., 102, 336-46.CrossRefGoogle Scholar
Peterson, T.D. (1990) Petrology and genesis of natrocarbonatite. Contrib. Mineral. Petrol., 105, 143-55.CrossRefGoogle Scholar
Poulsen, V. (1964) The sandstsones of the Precambrian Eriksfjord formation in South Greenland. Rapp. Grønlands geol. Unders., 2, 16 pp.Google Scholar
Stewart, J.W. (1970) Precambrian alkaline-ultramafic/carbonatite volcanism at Qagssiarssuk, South Greenland. Meddl. Grønland, 186, 4, 70 pp.Google Scholar
Tatsumoto, M., Knight, R.J. and Allègre, C.J. (1973) Time differences in the formation of meteorites as determined from the ratio of lead 207 to lead 206. Science, 180, 1279-83.CrossRefGoogle ScholarPubMed
Taylor, P. N. and Upton, B.G. (1993) Contrasting Pb isotopic compositions in two intrusive complexes of the Gardar Magmatic Province of South Greenland. Chem. Geol., 104, 261-8.CrossRefGoogle Scholar
Todt, W., Cliff, R.A., Hanser, A. and Hofmann, A.W. (1984) 202pb + 205pb double spike for lead isotopic analyses (abstract). Terra Cognita, 4, 209.Google Scholar
Verschure, R.H., Maijer, C., Andriessen, P.A.M., Boelrijk, N.A.I.M., Hebeda, E.H., Priem, N.H.A. and Verdurmen, E.A.T. (1983) Dating explosive volcanism perforating the Precambrian basement in Southern Norway. Nor. geol. unders., 380, 35—49.Google Scholar
Whitehouse, M.J. (1989) Pb-isotope evidence for U-Th-Pb behaviour in a prograde amphibolite to granulite facies transition from the Lewisian complex of north-west Scotland: Implications for Pb-Pb dating. Geochim. Cosmoch. Acta, 53, 717—24.CrossRefGoogle Scholar