Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T08:22:07.132Z Has data issue: false hasContentIssue false

Widenmannite, a rare uranyl lead carbonate: occurrence, formation and characterization

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské náměstí 68, Praha 1, 115 79, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské náměstí 68, Praha 1, 115 79, Czech Republic
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Václavské náměstí 68, Praha 1, 115 79, Czech Republic
P. Škácha
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, Praha 2, 128 40, Czech Republic
V. Goliáš
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, Praha 2, 128 40, Czech Republic
P. Jarka
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, Praha 2, 128 40, Czech Republic
F. Laufek
Affiliation:
Czech Geological Survey, Geologická 6, Praha 5, 152 00, Czech Republic
J. Jehlička
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague, Faculty of Science, Albertov 6, Praha 2, 128 40, Czech Republic
I. Němec
Affiliation:
Department of Inorganic Chemistry, Charles University in Prague, Faculty of Science, Hlavova 2030, Praha 2, 128 40, Czech Republic
L. Strnad
Affiliation:
Laboratories of the Geological Institutes, Charles University in Prague, Faculty of Science, Albertov 6, Praha 2, 128 40, Czech Republic
*

Abstract

The rare uranyl lead carbonate widenmannite, Pb2(UO2)(CO3)3, was found at the Jánská vein, Příbram, Czech Republic, where two generations occur in several morphological types and mineral associations in hydrothermal veins. Alpha spectroscopy shows that these two generations have different ages, >220,000 and 118±12 y. ICP-MS analysis indicates that both widenmannites have a dominance of non-radiogenic Pb which originates from weathered galena. The older widenmannite I forms fine-grained, grey to beige aggregates in the highly altered supergene part of the hydrothermal ore vein in association with pyromorphite, cerussite and goethite. The younger widenmannite II occurs as white, yellow or greenish-yellow thin tabular crystals upto 0.5 mm long in association with cerussite, anglesite, limonite, kasolite and an unnamed Pb-U-O phase. Thermal analysis suggests that widenmannite decomposes in several steps, with Pb uranate as the final product. Infrared and Raman spectroscopy confirm the presence of non-equivalent (CO3)2– groups, bidentately coordinated in uranyl hexagonal polyhedra, forming the well known uranyl tricarbonate complex. Infrared spectroscopy shows conclusively that widenmannite does not contain molecular H2O.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A., Chieh, C., Irish, D.E. and Tong, J.P.K. (1980) An X-ray crystallographic, Raman, and infrared spectral study of crystalline potassium uranyl carbonate, K4UO2(CO3)3 . Canadian Journal of Chemistry, 58, 16511658.CrossRefGoogle Scholar
Babánek, F. (1872) Zur Paragenese der Přibramer Mineralien. Jahrbuch der kaiser-königliche geologicshes Reichsanstalt (Wien), 22, 2739. (in German).Google Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Burnham, Ch.W. (1962) Lattice constant refinement. Carnegie Institute of Washington Year Book, 61, 132135.Google Scholar
Burns, P.C. (1999) The crystal chemistry of uranium. Pp. 2390 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391984.CrossRefGoogle Scholar
Burns, P.C., Miller, M.L. and Ewing, R.C. (1996) U6+ minerals and inorganic phases: A comparison and hierarchy of crystal structures. The Canadian Mineralogist, 34, 845880.Google Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Carlson, M.S., Robinson, W.G., Elder, J.M., Jaszczak, A.J. and Bornhorst, J.T. (2007) Greenockite and associated uranium – vanadium minerals from the Huron River uranium prospect, Baraga County, Michigan. Rocks & Minerals, 82, 298308.CrossRefGoogle Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Čejka, J. (2005) Vibrational spectroscopy of the uranyl minerals – infrared and Raman spectra of the uranyl minerals II. Uranyl carbonates. Bulletin mineralogicko- petrologického oddělení Národního Muzea (Praha), 13, 6272. (in Czech).Google Scholar
Chabaux, F., Riotte, J. and Dequincey, O. (2003) U-Th- Ra fractionation during weathering and river transport. Pp. 533576 in: Uranium-series Geochemistry. (Bourdon, B., Henderson, G.M., Lundstrom, C.C. and Turner, S.P., editors). Reviews in Mineralogy, 52, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Cheary, R.W. and Coelho, A.A. (1996) Programs XFIT and FOURYA, Deposited in CCP14 Powder Diffraction Library, Engineering and Physical Sciences Research Council, Daresbury Laboratory, Warrington, UK.Google Scholar
Dik, T.A., Umreyko, D.S., Nikanovich, M.V. and Klavsut‘, G.N. (1989) Coordination influence on spectral characteristics of anion in uranyl carbonate complexes. Koordinatsionnaya Khimiya, 15, 225231. (in Russian).Google Scholar
Elton, N.J. and Hooper, J.J. (1995) Widenmannite from Cornwall, England: the second world occurrence. Mineralogical Magazine, 59, 745749.CrossRefGoogle Scholar
Elton, N.J. and Hooper, J.J. (1996) A further occurrence of widenmannite in Cornwall, England (North Zawn, St Just.). Journal of the Russell Society,,6, 98.Google Scholar
Halls, Ch. (2005) Report on the mineralogy of a sample from the Agricola Resources Energy Ridge Prospect, Hautuajaervi, Lapin Laani, Finland. Final Report, Department of Mineralogy, NHM, London, pp. 124.Google Scholar
Jarka, P. (2007) Uran-polymetallic mineralization of the Jánská vein, Příbram-Březové Hory, ČR: Alpha spectrometric determination of radionuclides. MSc thesis (MS), Charles University in Prague, 45 pp. (in Czech).Google Scholar
Jolivet, J.P., Thomas, Y. and Taravel, B. (1980) Vibrational study of coordinated ions. Journal of Molecular Structure, 60, 9398.CrossRefGoogle Scholar
Killeen, P.G. and Carmichael, C.M. (1976) Determination of radioactive disequilibrium in uranium ores by alpha-spectrometry. Papers of Geological Survey of Canada, 75 (38), 117.Google Scholar
Koglin, E., Schenk, H.J. and Schwochau, K. (1979) Vibration and low temperature spectra of the uranyltri carbona to complex [UO2(CO3)3]4– . Spectrochimica Acta, 35A, 641647.CrossRefGoogle Scholar
Le Bail, A. (1998) HKLGEN: A program for generating hkl, multiplicity, d(hkl), 2-theta from a wavelength, a space group, cell parameters. Deposited in CCP14 Powder Diffraction Library, Engineering and Physical Sciences Research Council, Daresbury Laboratory, Warrington, UK (http://www.ccp14.ac.uk/ccp/web-mirrors/armel/www.cristal.org/).Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H¨O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Löfvendahl, R. and Holm, E. (1981) Radioactive disequilibria and apparent ages of secondary uranium minerals in Sweden. Lithos, 14, 189201.CrossRefGoogle Scholar
Maxwell, S.L. (1998) Rapid actinide-separation methods. Radioactivity and Radiochemistry, 8, 3644.Google Scholar
Mihaljevič, M., Zuna, M., Ettler, V., Šebek, O., Strnad, L. and Goliáš, V. (2006) Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Příbram, Czech Republic). Science of the Total Environment, 372, 334344.CrossRefGoogle Scholar
Neymark, L.A. and Amelin, Y.V. (2008) Natural radionuclide mobility and its influence on U-Th-Pb dating of secondary minerals from the unsaturated zone at Yucca Mountain, Nevada. Geochimica et Cosmochimica Acta, 72, 20672089.CrossRefGoogle Scholar
Ondruš, P. and Hyršl, J. (1989) New finds and revision of the secondary minerals from Příbram district. Acta Universitatis Carolinae (Prague), Geologica, Čech Vol., 521-533.Google Scholar
Plášil, J., Škácha, P. and Sejkora, J. (2003) Neufunde auf dem Johannes-Gang, Revier Birkenberg, Příbram (CZ). Lapis, 28, 7172. (in German).Google Scholar
Plášil, J., Sejkora, J., Škácha, P., Goliáš, V. and Hušák, M. (2005) Compreignacite, uranophane and uranopilite from the Jánská vein, Březové Hory, Příbram. Bulletin mineralogicko-petrologického Oddělení Národního Muzea (Praha), 13, 192195. (in Czech).Google Scholar
Plášil, J., Sejkora, J., Čejka, J., Škácha, P., Goliáš, V. and Ederová, J. (2010) Characterization of phosphate rich metalodèvite from Příbram, Czech Republic. The Canadian Mineralogist, 48, 113122.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ ϕ(ρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Reuss, E.A. (1859) Mineralogische Notizen aus Böhmen. Lotos (Wien) 9, 5156. (in German).Google Scholar
Reuss, E.A. (1863) Über die Paragenese der auf den Erzgangen von Príbram einbrechenden Mineralien. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, (Wien), 47, 1376. (in German).Google Scholar
Richards, D.A. and Dorale, J.A. (2003) Uranium-series chronology and environmental applications of speleothems. Pp. 407460 in: Uranium-series Geochemistry. (Bourdon, B., Henderson, G.M., Lundstrom, C.C. and Turner, S.P., editors). Reviews in Mineralogy and Geochemistry, 52, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Sejkora, J. and Gabašová, A. (1995) Nesquehonite and widenmannite from Jáchymov. Bulletin mineralogicko- petrologického Oddělení Národního Muzea (Praha), 3, 241. (in Czech).Google Scholar
Sejkora, J., Čejka, J., Škácha, P., Gabašová, A. and Novotná, M. (2003) Minerals of the zippeite group from the Jánská vein, Březové Hory, Příbram. Bulletin mineralogicko-petrologického Oddělení Národního Muzea (Praha), 11, 183189. (in Czech).Google Scholar
Škácha, P. and Plášil, J. (2002) Minerals of the Březové Hory ore district. Bulletin mineralogicko-petrologického Oddělení Národního Muzea (Praha), 10, 4377. (in Czech).Google Scholar
Škácha, P. and Sejkora, J. (2001) Kasolite from the Jánská vein, Březové Hory, Příbram. Bulletin mineralogicko-petrologického Oddělení Národního Muzea (Praha), 9, 272273. (in Czech).Google Scholar
Škácha, P., Goliáš, V., Sejkora, J., Plášil, J., Strnad, L., Škoda, R. and Ježek, J. (2009) Hydrothermal uranium-base metal mineralization of the Jánská vein, Březové Hory, Příbram, Czech Republic: Lead isotopes and chemical dating of uraninite. Journal of Geosciences, 54, 113.Google Scholar
Strnad, L., Mihaljevič, M. and Šebek, O. (2005) Laser ablation and solution ICP-MS determination of REE in USGS BIR-1G, BHVO-2G and BCR-2G glass reference materials. Geostandards Newsletter - the Journal of Geostandards and Geoanalysis, 29, 303314.CrossRefGoogle Scholar
Vylita, T., Žák, K., Cílek, V., Hercman, H. and Mikšíková, L. (2007) Evolution of hot-spring travertine accumulation in Karlovy Vary/Carlsbad (Czech Republic) and its significance for the evolution of Teplá valley and Ohře/Eger rift. Zeitschrift für Geomorphologie, 51, 427442.CrossRefGoogle Scholar
Walenta, K. (1976) Widenmannit und Joliotit, zwei neue Uranylkarbonatmineralien aus dem Schwarzwald. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 167185. (in German).Google Scholar