Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T11:20:12.718Z Has data issue: false hasContentIssue false

Unit cell dimensions of the hydrated aluminium phosphate–sulphate minerals sanjuanite, kribergite, and hotsonite

Published online by Cambridge University Press:  05 July 2018

H. De Bruiyn
Affiliation:
Department of Geology, Univ. of Orange Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
G. J. Beukes
Affiliation:
Department of Geology, Univ. of Orange Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
W. A. Van Der Westhuizen
Affiliation:
Department of Geology, Univ. of Orange Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa
E. A. W. Tordiffe
Affiliation:
Department of Geology, Univ. of Orange Free State, PO Box 339, Bloemfontein 9300, Republic of South Africa

Abstract

AT the time when the hydrated aluminium phosphate-sulphate hotsonite (Beukes et al., 1984a) and its equally rare relative zaherite (Beukes et al., 1984b; De Bruiyn et al., 1985) were discovered near Pofadder, South Africa, very little was known about the unit cells of the other two hydrated aluminium phosphate-sulphate minerals sanjuanite and kribergite, originally described by De Abeledo et al. (1968) from Argentina and Sweden, respectively. Although the Powder Diffraction file (PDF) contains the X-ray diffraction patterns for sanjuanite and kribergite (PDF 20-47 and 20-48 respectively), they had not been indexed nor have their unit cell parameters been calculated thus far.

Type
Short Communications
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., Evans, H. T., and Handwerker, D. S. (1972) Geol. Surv. Computer Contribution, 20, Geol. and Comp. Centre Divisions, Washington, DC, Program no. W9214, 26 pp.Google Scholar
Azàroff, L. V., and Buerger, M. J. (1958) The powder method in X-ray crystallography. McGraw-Hill, New York, 342 pp.Google Scholar
Beukes, G. J., Schoch, A. E., Van der Westhuizen, W. A., Bok, L. D. C., and De Bruiyn, H. (1984a) Am. Mineral. 69, 979-83.Google Scholar
Beukes, G. J., De Bruiyn, H., Van der Westhuizen, W. A., and Bok, L. D. C. (1984b) Mineral. Mag. 48, 131-5.CrossRefGoogle Scholar
De Abeledo, M. E. J., Angelelli, V., De Benyacar, M. A. R., and Gordillo, C. (1968) Am. Mineral. 53, 1-8.Google Scholar
De Bruiyn, H., Schoch, A. E., Beukes, G. J., Bok, L. D. C., and Van der Westhuizen, W. A. (1985) Mineral. Meg. 49, 145-6.CrossRefGoogle Scholar
De Wolff, P. M. (1968) J. Appl. Crystallogr. 1, 108-13.CrossRefGoogle Scholar
Fleischer, M. (1987) Glossary of mineral species. The Mineralogical Record Inc., Tucson, 232 pp.Google Scholar
Smith, G. S., and Snyder, R. L. (1979) J. AppL Crystallogr. 12, 60-5.CrossRefGoogle Scholar