Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T19:48:47.858Z Has data issue: false hasContentIssue false

Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals

Published online by Cambridge University Press:  04 March 2019

Olga N. Filimonova
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
Alexander L. Trigub
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia National Research Centre ‘Kurchatov Institute’, 1 Akademika Kurchatova pl., 123182 Moscow, Russia
Dmitriy E. Tonkacheev
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
Max S. Nickolsky
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, korp. 4, Moscow, 119071Russia
Kristina O. Kvashnina
Affiliation:
ESRF – EFiguropean Synchrotron Radiation Facility, 71, avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314, Dresden, Germany
Dmitriy A. Chareev
Affiliation:
Institute of Experimental Mineralogy (IEM RAS), 142432 Chernogolovka, Moscow Region, Russia Institute of Physics and Technology, Ural Federal University, Mira st., 19, 620002 Ekaterinburg, Russia Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlyovskaya, 4/5, 420008, Kazan, Russia
Ilya V. Chaplygin
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
Elena V. Kovalchuk
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
Sara Lafuerza
Affiliation:
ESRF – EFiguropean Synchrotron Radiation Facility, 71, avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
Boris R. Tagirov*
Affiliation:
Institute of Geology of Ore Deposits (IGEM RAS), 35, Staromonetnyi per., 119017 Moscow, Russia
*
*Author for correspondence: Boris R. Tagirov, Email: [email protected]

Abstract

Sphalerite is the main source of In – a ‘critical’ metal widely used in high-tech electronics. In this mineral the concentration of In is commonly correlated directly with Cu content. Here we use X-ray absorption spectroscopy of synthetic compounds and natural crystals in order to investigate the substitution mechanisms in sphalerites where In is present, together with the group 11 metals. All the admixtures (Au, Cu, In) are distributed homogeneously within the sphalerite matrix, but their structural and chemical states are different. In all the samples investigated In3+ replaces Zn in the structure of sphalerite. The In ligand distance increases by 0.12 Å and 0.09–0.10 Å for the 1st and 2nd coordination shells, respectively, in comparison with pure sphalerite. The In–S distance in the 3rd coordination shell is close to the one of pure sphalerite. Gold in synthetic sphalerites is coordinated with sulfur (NS = 2.4–2.5, RAu–S = 2.35 ± 0.01 Å). Our data suggest that at high Au concentrations (0.03–0.5 wt.%) the Au2S clusters predominate, with a small admixture of the Au+ solid solution with an Au–S distance of 2.5 Å. Therefore, the homogeneous character of a trace-element distribution, which is commonly observed in natural sulfides, does not confirm formation of a solid solution. In contrast to Au, the presence of Cu+ with In exists only in the solid-solution state, where it is tetrahedrally coordinated with S atoms at a distance of 2.30 ± 0.03 Å. The distant coordination shells of Cu are disordered. These results demonstrate that the group 11 metals (Cu, Ag and Au) can exist in sphalerite in the metastable solid-solution state. The solid solution forms at high temperature via the charge compensation scheme 2Zn2+Me++Me3+. The final state of the trace elements at ambient temperature is governed by the difference in ionic radii with the main component (Zn), and concentration of admixtures.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Apple, E.F. and Williams, F.E. (1959) Associated donor-acceptor luminescent centers in zinc sulfide phosphors. Journal of the Electrochemical Society, 106, 224230.Google Scholar
Bader, R.F.W. (1990) Atoms in Molecules: a Quantum Theory. Oxford University Press, Oxford, U.K.Google Scholar
Bader, R.F.W. (1991) A quantum theory of molecular structure and its applications. Chemical Reviews, 91, 893928.Google Scholar
Belissont, R., Muñoz, M., Boiron, M.-C., Luais, B. and Mathon, O. (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochimica et Cosmochimica Acta, 177, 298314.Google Scholar
Blöhl, P.E. (1992) Projector augmented-wave method. Physical Review B, 50, 1795317979.Google Scholar
Bonnet, J., Cauzid, J., Testemale, D., Kieffer, I., Proux, O., Lecomte, A. and Bailly, L. (2017) Characterization of germanium speciation in sphalerite (ZnS) from Central and Eastern Tennessee, USA, by X-ray absorption spectroscopy. Minerals, 7, 79.Google Scholar
Bortnikov, N.S., Cabri, L.J., Vikentiev, I.V., Tagirov, B.R., Mc Mahon, G., Bogdanov, Yu.A. and Stavrova, O.O. (2003) Invisible gold in sulfides from seafloor massive sulfide edifices. Geology of Ore Deposits, 45, 201212.Google Scholar
Burke, E.A.J. and Kieft, C. (1980) Roquesite and Cu–In-bearing sphalerite from Långban, Bergslagen, Sweden. The Canadian Mineralogist, 18, 361363.Google Scholar
Chaplygin, I.V., Mozgova, N.N., Mokhov, A.V., Koporulina, E.V., Bernardt, H.-J. and Bryzgalov, I.A. (2007) Minerals of the system ZnS-CdS from fumaroles of the Kudriavy volcano, Iturup island, Kuriles, Russia. The Canadian Mineralogist, 45, 709722.Google Scholar
Chareev, D.A. (2016) General principles of the synthesis of chalcogenides and pnictides in salt melts using a steady-state temperature gradient. Crystallography Reports, 61, 506511.Google Scholar
Chareev, D.A., Volkova, O.S., Geringer, N.V., Koshelev, A.V., Nekrasov, A.N., Osadchii, V.O., Osadchii, E.G. and Filimonova, O.N. (2016) Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient. Crystallography Reports, 61, 682691.Google Scholar
Chareev, D.A., Osadchii, V.O., Shiryaev, A.A., Nekrasov, A.N., Koshelev, A.V. and Osadchii, E.G. (2017) Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient and microhardness. Physics and Chemistry of Minerals, 44, 287296.Google Scholar
Chernyshov, A.A., Veligzhanin, A.A. and Zubavichus, Y.V. (2009) Structural materials science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results. Nuclear Instruments and Methods in Physics Research A, 603, 9598.Google Scholar
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73, 47614791.Google Scholar
Cook, N.J., Ciobanu, C.L., Brugger, J., Etschmann, B., Howard, D.L., de Jonge, M.D., Ryan, C. and Paterson, D. (2012) Determination of the oxidation state of Cu in substituted Cu–In-Fe-bearing sphalerite via m-XANES spectroscopy. American Mineralogist, 97, 476479.Google Scholar
Cook, N.J., Etschmann, B., Ciobanu, C.L., Geraki, K., Howard, D.L., Williams, T., Rae, N., Pring, A., Chen, G., Johannessen, B. and Brugger, J. (2015) Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals, 5, 117132.Google Scholar
Corrado, C., Jiang, Yu., Oba, F., Kozina, M., Bridges, F. and Zhang, J.Z. (2009) Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals. Journal of Physical Chemistry A, 113, 38303839.Google Scholar
Fieber-Erdmann, M., Rossner, H., Holub-Krappe, E., Eyert, V. and Luck, I. (1999) Structural properties of Zn2–2x(CuIn)xS2 (X ≤ 1) solid solution thin film obtained by EXAFS. Journal of Synchrotron Radiation, 6, 474476.Google Scholar
Fletcher, R. (1987) Practical Methods of Optimization (2nd ed.). John Wiley & Sons, New York.Google Scholar
Galoisy, L. (2004) X-ray absorption spectroscopy in geosciences: Information from the EXAFS region. Pp. 553587 in: Spectroscopic Methods in Mineralogy (Beran, A. and Libowitzky, E., editors). EMU Notes in Mineralogy, Vol. 6.Google Scholar
Gauthier, C., Sole, V.A., Signorato, R., Goulon, J. and Moguiline, E. (1999) The ESRF beamline ID26: X-ray absorption on ultra dilute sample. Journal of Synchrotron Radiation, 6, 164166.Google Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M. (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.Google Scholar
Glatzel, P. and Bergman, U. (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - electronic and structural information. Coordination Chemistry Reviews, 249, 6595.Google Scholar
Glatzel, P., Weng, T.-C., Kvashnina, K., Swarbrick, J., Sikora, M., Gallo, E., Smolentsev, N. and Mori, R.A. (2013) Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. Journal of Electron Spectroscopy and Related Phenomena, 188, 1725.Google Scholar
Herzig, P.M., Hannington, M.D., Fouquet, Y., von Stackelberg, U. and Petersen, S. (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Economic Geology, 88, 21822209.Google Scholar
Ishikawa, K., Isonga, T., Wakita, S. and Suzuki, Y. (1995) Structure and electrical properties of Au2S. Solid State Ionics, 79, 6066.Google Scholar
Iwanowski, R.J. and Ławniczak-Jabłońska, K. (1996) EXAFS studies of local atomic structure in Zn1–xMnxS. Solid State Communications, 97, 879885.Google Scholar
Iwanowski, R.J. and Ławniczak-Jabłońska, K. (1997) EXAFS determination of bond lengths in Zn1–xFexS ternary alloys. Acta Physica Polonica A, 91, 797801.Google Scholar
Iwanowski, R.J., Ławniczak-Jabłońska, K., Gołacki, Z. and Traverse, A. (1998) Tetrahedral covalent radii of Mn, Fe, Co and Ni estimated from extended X-ray absorption fine structure studies. Chemical Physics Letters, 283, 313318.Google Scholar
Jamieson, J.C. and Demarest, H.H. Jr. (1980) A note on the compression of cubic ZnS. Journal of Physics and Chemistry of Solids, 41, 963964.Google Scholar
Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy and Petrology, 39, 211229.Google Scholar
Koelmans, H. (1960) Association and dissociation of centres in luminescent ZnS-In. Journal of Physics and Chemistry of Solids, 17, 6979.Google Scholar
Kresse, G. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 17581775.Google Scholar
Kvashnina, K.O. and Scheinost, A.C. (2016) A Johann-type X-ray emission spectrometer at the Rossendirf Beamline. Journal of Synchrotron Radiation, 23, 836841.Google Scholar
Ławniczak-Jabłońska, K. and Gołacki, Z. (1994) Extended X-ray absorption fine structure studies of Co doped ZnS and ZnSe alloys. Acta Physica Polonica A, 86, 727735.Google Scholar
Ławniczak-Jabłońska, K., Iwanowski, R.J., Gołacki, Z., Traverse, A., Pizzini, S. and Fontaine, A. (1995) Correlation between XANES of the transition metals in ZnS and ZnSe and their limit of solubility. Physica B, 208–209, 497499.Google Scholar
Ławniczak-Jabłońska, K., Iwanowski, R.J., Gołacki, Z., Traverse, A., Pizzini, S., Fontaine, A. and Winter, I. (1996) Local electronic structure of ZnS and ZnSe doped by Mn, Fe, Co, and Ni from X-ray-absorption near-edge structure studies. Physical Review B, 53, 11191128.Google Scholar
Melekestseva, I.Yu., Maslennikov, V.V., Tret'yakov, G.A., Nimis, P., Beltenev, V.E., Rozhdestvenskaya, I.I., Maslennikova, S.P., Belogub, E.V., Danyushevsky, L., Large, R., Yuminov, A.M. and Sadykov, S.A. (2017) Gold- and silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13′N, Mid-Atlantic Ridge: a case of magmatic contribution? Economic Geology, 112, 741773.Google Scholar
Mercer, C.N. (2015) Indium: Bringing Liquid-Crystal Displays into Focus. USGS Report, Fact Sheet 2015–3012, Reston, Virginia, USA.Google Scholar
Mercier-Langevin, P., Hannington, M.D., Dubé, B. and Bécu, V. (2011) The gold content of volcanogenic massive sulfide deposits. Mineralium Deposita, 46, 509539.Google Scholar
Mottana, A. (2004) X-ray absorption spectroscopy in mineralogy: Theory and experiment in the XANES region. Pp. 465552 in: Spectroscopic Methods in Mineralogy (Beran, A. and Libowitzky, E., editors). EMU Notes in Mineralogy, Vol. 6.Google Scholar
Norris, D.J., Efros, A.L. and Erwin, S.C. (2008) Doped nanocrystals. Nature, 319, 17761779.Google Scholar
Otero-de-la-Roza, A., Blanco, M.A., Martín Pendás, A. and Luaña, V. (2009) Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Comunications, 180, 157166.Google Scholar
Otero-de-la-Roza, A., Johnson, E.R. and Luaña, V. (2014) Critic2: A program for real-space analysis of quantum chemical interactions in solids. Physics Comunications 185, 10071018.Google Scholar
Pattrick, R.A.D, Mosselmans, J.F.W. and Charnock, J.M. (1998) An X-ray absorption study of doped sphalerites. European Journal of Mineralogy, 10, 239249.Google Scholar
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.Google Scholar
Schnohr, C.S. (2015) Compound semiconductor alloys: From atomic-scale structure to bandgap bowing. Applied Physics Reviews, 2, 031304.Google Scholar
Schorr, S. and Wagner, G. (2005) Structure and phase relations of the Zn2x(CuIn)1–xS2 solid solution series. Journal of Alloys and Compounds, 396, 202207.Google Scholar
Schorr, S., Tovar, M., Stuesser, N., Sheptyakov, D. and Geandier, G. (2006) Where the atoms are: Cation disorder and anion displacement in DIIXVI–AIBIIIX2VI semiconductors. Physica B, 385–386, 571573.Google Scholar
Schwarz-Schampera, U. (2014) Indium. Pp. 204229 in: Critical Metals Handbook (Gunn, G., editor). Wiley, UK.Google Scholar
Self, P.G., Norrish, K. and Milnes, A.R. (1990) Holes in the background in XRS. X-Ray Spectrometry, 19, 5961.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.Google Scholar
Tagirov, B.R., Baranova, N.N., Zotov, A.V., Schott, J. and Bannykh, L.N. (2006) Experimental determination of the stabilities of Au2S(cr) at 25°С and Au(HS)2 at 25–250°С. Geochimica et Cosmochimica Acta, 70, 36893701.Google Scholar
Tagirov, B.R., Trigub, A.L., Kvashnina, K.O., Shiryaev, A.A., Chareev, D.A., Nickolsky, M.S., Abramova, V.D. and Kovalchuk, E.V. (2016) Covellite CuS as a matrix for “invisible” gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals. Geochimica et Cosmochimica Acta, 191, 5869.Google Scholar
Tofanelli, M.A., Ackerson, C.J. (2012) Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters. Journal of the American Chemical Society, 134, 1693716940.Google Scholar
Tolcin, A.C. (2017) Indium. US Geological Survey, Mineral Commodity Summaries, 80–81.Google Scholar
Tonkacheev, D.E., Chareev, D.A., Abramova, V.D., Yudovskaya, M.A., Minervina, E.A. and Tagirov, B.R. (2015) Sphalerite as a matrix for noble, non-ferrous metals and semimetals: A EPMA and LA-ICP-MS study of synthetic crystals. Pp. 847–850 in: Proceedings of the 13th Biennial SGA Meeting, 24–27 August 2015, Nancy, France, vol. 2.Google Scholar
Trigub, A.L., Tagirov, B.R., Kvashnina, K.O., Chareev, D.A., Nickolsky, M.S., Shiryaev, A.A., Baranova, N.N., Kovalchuk, E.V. and Mokhov, A.V. (2017) X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system. American Mineralogist, 102, 10571065.Google Scholar
Vikentyev, I.V. (2015) Invisible and microscopic gold in pyrite: methods and new data for sulfide ores of the Urals. Geology of Ore Deposits, 57, 237265.Google Scholar
Vikentyev, I.V., Yudovskaya, M.A., Mokhov, A.V., Kerzin, A.L. and Tsepin, A.I. (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, Southern Urals, Russia. The Canadian Mineralogist, 42, 651665.Google Scholar
Warkentin, M., Bridges, F., Carter, S.A. and Anderson, M. (2007) Electroluminescence materials ZnS:Cu,Cl and ZnS:Cu,Mn,Cl studied by EXAFS spectroscopy. Physical Review B, 75, 075301.Google Scholar
Wilson, S.A., Ridley, W.I. and Koenig, A.E. (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 17, 406409.Google Scholar
Yen, W.M. and Weber, M.J. (2004) Inorganic Phosphors: Compositions, Preparation and Optical Properties. CRC Press, Florida, USA.Google Scholar
Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C. and Eller, M.J. (1995) Multiple-scattering calculations of X-ray-absorption spectra. Physical Review B, 52, 2995.Google Scholar
Supplementary material: File

Filimonova et al. supplementary material

Filimonova et al. supplementary material 1

Download Filimonova et al. supplementary material(File)
File 721.8 KB