Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T08:36:22.728Z Has data issue: false hasContentIssue false

Strontian melilite in a nephelinite lava from Etinde, Cameroon

Published online by Cambridge University Press:  05 July 2018

J. G. Fitton
Affiliation:
Department of Geology, Edinburgh University, UK
D. J. Hughes
Affiliation:
Department of Geology, Portsmouth Polytechnic, UK

Abstract

Strontium-rich (up to 16 wt% SrO) melilite occurs as microphenocrysts in a nosean-leucite-nephelinite lava from Etinde, Cameroon. Electron microprobe analyses show that the melilite is very strongly zoned with Sr, Fe, and Na enrichment towards the crystal rims. Sodium melilite and sodium ferrimelilite are the dominant end-member molecules and together account for up to 76 mole%. The crystals are optically negative and strongly birefringent with birefringence ranging from 0.014 in the cores to 0.032 at the crystal rims. Refractive indices measured at the rim of one crystal gave ω = 1.656, ɛ = 1.628. The cell dimensions of strontian melilite are a = 7.765Å, c = 5.054Å.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brisi, C. and Abbatista, F. (1960). Ricerche sulle melilite.— Nota I. Struttura e proprieta della stronzio-gehlenite. Ann. Chim. (Roma) 50, 1061-5.Google Scholar
Dear, P. S. (1957). Sub-liquidus equilibria for the ternary system SrO-Al2O3-SiO2 . Bull. Va. Poly. Inst. Engrg. Expt.Sta. 50(11), 12 pp.Google Scholar
Dear, P. S. (1960). Solid state equilibria for the ternary system strontia-magnesia-silica. Ibid. 54 (1), 10 pp.Google Scholar
Dear, P. S. (1969). Isomorphism of ∼tkermanite and strontiogehlenite. Lithos 3, 13-16.CrossRefGoogle Scholar
Donaldson, C. H. and Dawson, J. B. (1978). Skeletal crystallisation and residual glass compositions in a cellular alkalic pyroxenite nodule from Oldoinyo Lengai. Contrib. Mineral. Petrol. 67, 139-49.CrossRefGoogle Scholar
Esch, E. (1901). Der Vulcan Etinde in Kamerun und seine Gesteine (I). Sitzungsber. Akad. Wiss. Berlin, 277-99. Google Scholar
Gold, D. P. (1966). The minerals of the Oka carbonatite and alkaline complex, Oka, Quebec. Pap. Proc. Int. Mineral. Assoc. 4th Gen. Meeting, New Delhi, 1964, 109-25.Google Scholar
Kogarko, L. N., Petrova, E. N., and Krigman, L. D. (1980). Fractionation of strontium in the crystallization of melilite in the nepheline-diopside-apatite system. DokL Akad. Nauk SSSR, 253 (1), 240-2 (in Russian).Google Scholar
Platt, R. G. and Edgar, A. D. (1972). The system nephelinediopside-sanidine and its significance in the genesis of melilite and olivine bearing alkaline rocks. J. Geol. 80, 224-36.CrossRefGoogle Scholar
Sahama, Th. G. (1967). Iron content of melilite. C.R. Soc. Géol. Finl. 39, 17-28.Google Scholar
Sweatman, T. R. and Long, J. V. P. (1969). Quantitative electron-probe microanalysis of rock-forming minerals. J. Petrol. 10, 332-79.CrossRefGoogle Scholar
Velde, D. and Yoder, H. S. (1977). Melilite and melilitebearing igneous rocks. Carnegie Inst. Washington Yearb. 76, 478-85.Google Scholar