Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T08:02:29.879Z Has data issue: false hasContentIssue false

Solidification fronts and magmatic evolution

Published online by Cambridge University Press:  05 July 2018

Bruce D. Marsh*
Affiliation:
M. K. Blaustein Dept. of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, 21218, USA

Abstract

From G. F. Becker's and L. V. Pirsson's early enunciations linking the dynamics of magma chambers to the rock records of sills and plutons to this day, two features stand at the centre of nearly every magmatic process: solidification fronts and phenocrysts. The structure and behaviour of the envisioned solidification front, however, has been mostly that akin to non-silicate, non-multiply-saturated systems, which has led to confusion in appreciating its role in magmatic evolution. The common habit of intruding magmas to carry significant amounts of phenocrysts, which can lead to efficient fractionation, layering, and interstitial melt flow within extensive mush piles, when coupled with solidification fronts, allows a broad understanding of the processes leading to the rock records of sills and lava lakes. These same processes are fundamental to understanding all magmas.

The spatial manifestation of the liquidus and solidus is the Solidification Front (SF); all magmas, stationary or in transit, are encased by SFs. In the ideal case of an initially crystal-free, cooling magma, crystallinity increases from nucleation on the leading liquidus edge to a holocrystalline rock at the trailing solidus. The package of SF isotherms advances inward, thickening with time and, depending on location — roof, floor, or walls — and the initial crystallinity of the magma, is instrumental in controlling magmatic evolution. Bimodal volcanism as well as much of the structure of the oceanic crust may arise from the behaviour of SFs.

In mafic magmas, somewhere near a crystallinity (N) of 55% (vol), depending on the phase assemblage, the SF changes from a viscous fluid (suspension (0<N<25) and mush (25<N<55%)) to an elastic crystalline network (rigid crust (55<N<100%)) of some strength containing interstitial residual melt. With thickening of the roofward SF of some mafic magmas, the weight of the leading, viscous portion repeatedly tears the crust near N ∼ 55–60%, efficiently segregating the local residual melt into zones of interdigitating silicic lenses. This is SF instability (SFI), a process of possible importance in continental crust initiation and evolution, in producing silicic segregations in oceanic crust, and in recording the inability of the viscous part of the upper SF ever to detach wholly in typical (<∼ 1 km) sheet-like magmas. These granophyric and pegmatitic segregations, individually reaching 1–2 m in thickness and 30–50 m in length, form thick (∼ 50–75 m) zones that can be misconstrued as sandwich horizons where the last liquids might have accumulated. In effectively splitting the magma chemically and spatially, SFI is, in essence, a form of chaos (i.e. silicic chaos).

Differentiation of initially crystal-free, stationary magmas is limited to processes occurring within SFs, which operate in competition with the rate of inward advancement of solidification. Local processes operating on characteristic time scales longer than the time for the SF to advance a distance equal to its own thickness are suppressed. Enormous increases in viscosity outward within the viscous, leading portion of the SF efficiently partition the distribution of melt accessible to eruption. Eruptible melts lie essentially inward of the SF and are thus severely restricted in silica enrichment. The silica-enriched SFI melts are thus generally inaccessible to collection and eviction unless the host SF is reprocessed or “burned back” through, respectively, later regional magmatism or massive, late-stage re-injection. And because of large viscosity contrasts between SFI melts and host basalts, once freed, SFI melts are literally impossible to homogenize back into the system and may collect and compact against the roof to form large silicic masses. Unusually voluminous, bulbous masses of silicic granophyre present along, and sometimes warping, the roofs of large diabase sills may reflect collections of remobilized blobs of SFI melts. These bulbous masses may be later added to the continental crust through solid state creep.

In sheets made of phenocryst-rich, singly saturated magma, most phenocrysts are able through settling or floating to avoid capture by the advancing SFs. Significant differentiation is possible through extensive settling of initial phenocrysts and upward leakage of interstitial residual melt from the associated cumulate pile, which over-thickens the lower SF, greatly tipping the competitive edge against suppression of melt leakage by advancing solidification. Dense interstitial melts may similarly drain from roofward cumulates of light phenocrysts. The variation in crystal size and modal abundance in these cumulate piles are intimate records of prior crystallization, transport, and filling.

Magmas in transit erode SFs and thoroughly charge the magma with crystals, facilitating fractionation and differentiation, especially if the body occasionally comes to rest. The key to protracted differentiation through fractional crystallization is not crystallization in stationary, closed chambers, but the repeated transport and chambering of magma or the periodic resupply to chambers of phenocryst-rich magma. This is punctuated differentiation, which may be the general case. Close corollaries are that thick, closed sheets of initially crystal-free, multiply-saturated magma undergo precious little overall differentiation, and that deciphering the sequence and crystallinity, including in transit phenocryst entrainment, growth, and sorting, of the filling events is central to unravelling intrusive history.

Variations in temperature, whether on phase diagrams or in actual magmas, are intrinsically linked to commensurate variations in space and time in magmatic systems. The spectrum of all physical and chemical processes associated with magma is accordingly strongly partitioned in space and time.

The idea of a magma chamber as a vat of low crystallinity melt crystallizing everywhere within and differentiating through crystal settling is unrealistic. A magma chamber formed of any number of crystal-laden inputs, encased by inward-propagating, dynamic solidification fronts, and where significant differentiation is tied to the dynamics of late-stage, interstitial melt within extensive mush piles is more in accord with the rock record.

Type
The 1995 Hallimond Lecture
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A.T. (1995) Lithos, 34, 1925.CrossRefGoogle Scholar
Avrami, M. (1939) J. Chem. Phys., 7, 1103 — 12.CrossRefGoogle Scholar
Avrami, M. (1940) J. Chem. Phys., 8, 212–24.CrossRefGoogle Scholar
Baragar, W.R. (1960) Bull. Geol. Soc. Amer,, 71, 1589–644.CrossRefGoogle Scholar
Barksdale, J.D. (1937) Amer. J. Sci., 33, 321–59.CrossRefGoogle Scholar
Barth, G.A., Kleinrock, M.C. and Helz, R.T. (1994) J. Geophys. Res., 99(B4), 7199—217.Google Scholar
Becker, G.F. (1897a) Amer. J. Sci., 4, 257–61.CrossRefGoogle Scholar
Becker, G.F. (1897b) Amer. J. Sci., 4, 22. Google Scholar
Bcckermann, C. and Viskanta, R. (1993) Applied Mechanical Review, 46(1), 1—27.Google Scholar
Bhaltacharji, S. and Smith, C. (1964) Science, 145, 150–3.CrossRefGoogle Scholar
Bowen, N.L. (1910) J, Geol., 18658-74.Google Scholar
Bowen, N.L. (1915a) J. Geol., 23, 189.CrossRefGoogle Scholar
Bowen, N.L. (1995b) Amer, J. Sci,, 39, 175–91.Google Scholar
Bowen, N.L. (1915c) Amer. J. Sci., 40, 161–85. Bowen, N.L. (1919) J. Geol., 27, 393430.CrossRefGoogle Scholar
Brandeis, G. and Jaupart, C. (1986) Earth Planet. Sci. Lett., 345—61.Google Scholar
Brandeis, G., Jaupart, C. and Allcgrc, C.J. (1984) J. Geophys. Res; 89(B12), 10, 161—77.Google Scholar
Brown, G.M. (1956) Phil. Trans. Roy. Soc. London B240, 1-53.Google Scholar
Bryan, W.B. (1985) Contrib. Mineral. Petrol., 83, 6274.CrossRefGoogle Scholar
Bunsen, R.W. (1851) Ann. Phys. Chem., 83, 197272.CrossRefGoogle Scholar
Carmichael, I.S. E., Nicholls, J. and Smith, A.L. (1970) Amer. Mineral., 55, 246–63.Google Scholar
Carmichael, I.S. E., Turner, F.J. and Verhoogen, J. (1974) Igneous Petrology. McGraw-Hill Book Company, 739 pp.Google Scholar
Cashman, K.V. (1990). In Modern Methods of Igneous Petrology: Understanding Magmatic ProcessesVol. 24 (ed. NicholJs, J. and Russell, J.K.), Mineralogical Society of America, pp. 259314.CrossRefGoogle Scholar
Cashman, K.V. (1992) Contrib. Mineral. Petrol., 109, 431–49.CrossRefGoogle Scholar
Cashman, K.V. (1993) Contrib. Mineral. Petrol., 113, 126–42.CrossRefGoogle Scholar
Cashman, K.V. and Marsh, B.D., (1988a) Contrib. Mineral. Petrol, 99, 292305.CrossRefGoogle Scholar
Congdon, R.D. (1990) The solidification of the Shonkin Sag laccolith: Mineralogy, petrology and experimental phase equilibria. Ph.D. Thesis, Johns Hopkins University, 362 pp.Google Scholar
Davis, S.H., Huppert, H.E., Muller, U. and Worster, M.G. (eds.). (1992) In Interactive Dynamics of Convection and Solidification Kluwer Academic Publishers, 211 CrossRefGoogle Scholar
Detrick, R.S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J. and Brocher, T. (1987) Nature, 326, 3541.CrossRefGoogle Scholar
Dick, H.J., Meyer, P.S., Bloomer, S., Kirby, S., Stakes, D. and Mawer, C. (1991) Proceedings of the Ocean Drilling Program, 118, 439–53..Google Scholar
Dixon, S. and Rutherford, M.J. (1979) Earth Planet. Sci. Lett., 45, 4560.CrossRefGoogle Scholar
Drever, H.L. and Johnston, R. (1958) Roy. Soc. Edinburgh Trans., 63, 459–99.CrossRefGoogle Scholar
Drever, H.L. and Johnston, R. (1967). In Ultramafic and Related Rocks (P.J. Wyllie, ed.), John Wiley and Sons, Inc. pp. 7182.Google Scholar
Ernst, W.G. (I960) J. Petrol., 1, 286303.Google Scholar
Fodor, R.V. and Moore, R.B. (1994) Bull. Volcan., 56, 6274.CrossRefGoogle Scholar
Fodor, R.V., Rudek, E.A. and Bauer, G.R. (1993) Bull. Volcan., 55, 204–18.CrossRefGoogle Scholar
Ford, A.B. (1970). In Symposium on the Bushveld Igneous Complex and Other Layered IntrusionsVol. Special Publication 1 (Visser and v. Gruenewaldt, eds.), Geological Society of South Africa, pp. 492-510.Google Scholar
Ford, A.B. and Himmelberg, G.R. (1991). In The Geology of Antarctica (R.J. Ringcy, ed.), Oxford University Press, pp. 175—214.Google Scholar
Frenkel, M.Y., Ariskin, A.A., Barmina, G.S., Korina, M.I. and Koptev-D vornikov, Y.V. (1988) Geochemistry International 25(6), 35—42.Google Scholar
Frenkel, M.Y., Yaroshcvsky, A.A., Ariskin, A.A., Barmina, G.S., Koptev-Dvornikov, H.V. and Kireev, B.S. (1989). In Magma-Crust Interactions and Evolution(Bonin, B., Didier, J., P., LeFort, G., Propach, E., Puga and Vistclius, A.B., eds.), Theophrastus Publications, S.A. pp. 3—88.Google Scholar
Froelich, A.J. and Gottfried, D. (1988) US Geol. Surv. Bull., 1776, I5J-75.Google Scholar
Fujii, T. (1974) Liihos. 7, 133-7.Google Scholar
Garcia, M.O., Ho, R.A., Rhodes, J.M. and Wolfe, E.W. (1989) Bull. Volcan., 52, 8196.CrossRefGoogle Scholar
Ghiorso, M.S. and Carmichael, I.S.E. (1987). In Thermodynamic Modeling of Geological Materials: Minerals, Fluids and MeltsVol. 17 (Carmichael, I.S.E. and Eugstcr, H.P., eds.), Mineralogical Society of America, pp. 467-99.Google Scholar
Gibb, F.G. (1968) J. Petrol., 9(3), 411-43.CrossRefGoogle Scholar
Gibb, F.G. (1976) J. Geol. Soc,, 132, 209–22.CrossRefGoogle Scholar
Gibb, F.G. and Henderson, C.M. (J989) Geol Mag., 2, 127–37.Google Scholar
Gibb, F.G. and Henderson, C.M. (1992) Contrib. Mineral. Petrol, 109, 538–45.CrossRefGoogle Scholar
Gray, N.H. and Crain, I.K. (1969) Canad. J. Earth Sci, 6, 1211–6.CrossRefGoogle Scholar
Greenspan, H.P. and Ungarish, M. (1982) Internal. J. Multiphase Flow, 8(6).Google Scholar
Grossenbacher, K.A. (1994) Origin of large granophyre pods in a MesOz.oic diabase sheet near Geitysburgh, Pennsylvania. Ph.D. Thesis, Johns Hopkins University, 395 pp.Google Scholar
Grossenbacher, K. and Marsh, B.D. (1991) Trans. Amer. Geophys. Union, 72 (17), 315—6.Google Scholar
Grout, F.F. (1918) J. Geol, 26(6), 481–99.Google Scholar
Gunn, B.M. (1966) Geochim. Cosmochim. Acta, 30, 881920.CrossRefGoogle Scholar
Guthrie, F. (1884) Phil Mag., 27(108), 462-83.Google Scholar
Helz, R.T. (1980) Volcan. 43(4) 675—701.Google Scholar
Helz, R.T. (1986) Geochem, Soc. Spec. PubL, 1, 241–58.Google Scholar
Helz, R.T. and Wright, T.L. (1992) Bull. Volcan., 54, 361–84.CrossRefGoogle Scholar
Henderson, C.M. and Gibb, F.G. (1987) Trans. Roy. Soc. Edinburgh: Earth Sci., 77, 325–47.CrossRefGoogle Scholar
Hess, G.B. (1972) Geol. Soc. Amer, Mem.no. 132. Hess, H.H. (1960) Geoi Soc. Amer. Mem.no. 80.Google Scholar
Ho, R.A. and Garcia, M.O. (1988) Bull. Volcan., 50, 3546.CrossRefGoogle Scholar
Hort, M. and Spohn, T. (1991a) Earth Planet. Sci. Lett., 107, 463–74.CrossRefGoogle Scholar
Hort, M. and Spohn, T. (1991/j) J. Geophys. Res., 96(B1), 485-99.Google Scholar
Hort, M., Marsh, B.D. and Spohn, T. (1993) Contrib. Mineral. Petrol., 114, 425–40.CrossRefGoogle Scholar
Hunter, R.H. and Cheadle, M.J. (1995) Magmatic Processes: Do the Answers Lie in the Rocks?Ann. Meeting Mineralogical Society, Sheffield, Abstracts Vol., p. 65.Google Scholar
Hurlbut, C.S. (1939) Bull. Geol. Soc. Amer., 50, 1043–112.CrossRefGoogle Scholar
Irvine, T.N. (1970) Canad. J. Earth ScL, 7, 1031–61.CrossRefGoogle Scholar
Irvine, T.N. (1987) In Origins of Igneous Layering(I. Parsons, ed.) D. Reidel Publ. Co., pp. 185—245.Google Scholar
Jaeger, J.C. and Joplin, G.A. (1955) J. Geol. Soc. Austral., 2, 1 — 19.Google Scholar
Kanaris-Sotiriou, R. and Gibb, F.G. (1989) J. Geol. Soc., London, 146, 607–10.CrossRefGoogle Scholar
Kirkpatrick, R.J. (1983). In Kinetics of Geochemical ProcessesVol. 8 (A.C. Lasaga and R.J. Kirkpatrick, eds.), Mineralogical Society of America, pp. 321-98.Google Scholar
Komar, P.D. (1972a) Geol. Soc. Amer. Bull., 83, 973–87.CrossRefGoogle Scholar
Komar, P.D. (1972^) Geol. Soc. Amer. Bull., 83, 3443–8.CrossRefGoogle Scholar
Komar, P.D. (1976) 1336-42. Geol. Soc. Amer. Bull., 87, 1336–422.0.CO;2>CrossRefGoogle Scholar
Kurz, W. and Fisher, D.J. (1992) Fundamentals of Solidification. Trans. Tech. Publications, 305 pp.Google Scholar
Lambert, D.D., Walker, R.J., Morgan, J.W., Shirey, S.B., Carlson, R.W., Zientek, M.L., Lipin, B.R., Koski, M.S. and Cooper, R.L. (1994) J.Petrol 35(6), 1717-53.Google Scholar
Langmuir, C.H. (1989) Nature, 340, 199205.CrossRefGoogle Scholar
Langmuir, C.H., Klein, E.M. and Plank, T. (1992). In Mantle Flow and Melt Generation at Mid-Ocean RidgesVol. Geophysical Monograph 71 (J. Phipps Morgan, D.K. Blackman and J.M. Sinton, eds.), American Geophysical Union, pp. 183—280.Google Scholar
Leal, L.G. (1980) Ann. Rev. Fluid Mechanics, 12, 435–76.CrossRefGoogle Scholar
Lesher, C.E. and Walker, D. (1988) J. Geophys. Res., 93(B9), 10,295-311.Google Scholar
Maaloe, S. and Hansen, B. (1982) Contrib. Mineral Petrol, 81, 203–11.CrossRefGoogle Scholar
Maaloe, S., Pedersen, R.B. and James, D. (1988) Contrib. Mineral Petrol., 98, 401–7.CrossRefGoogle Scholar
Macdonald, K.C. and Fox, P.J. (1993) GSA Today, 3(1 and 2).Google Scholar
Malpas, J. (1993) GSA Today, 3, 5357.Google Scholar
Mangan, M.T. and Marsh, B.D. (1992) J. Geol., 100, 605–20.CrossRefGoogle Scholar
Mangan, M.T., Marsh, B.D., Froelich, A.J. and Gottfried, D. (1993) ./. Petrol., 34, 1271–302.CrossRefGoogle Scholar
Marsh, B.D., (1981) Contrib. Mineral. Petrol., 78, 8598.CrossRefGoogle Scholar
Marsh, B.D. (1988a) Geol. Soc. Amer, Bull., 100, 1720–37.2.3.CO;2>CrossRefGoogle Scholar
Marsh, B.D. (1988b) Contrib. Mineral. Petrol; 99, 277–91.CrossRefGoogle Scholar
Marsh, B.D. (1989) J. Petrol., 30, 479530.CrossRefGoogle Scholar
Marsh, B.D. (1995) to be submitted.Google Scholar
Marsh, B.D. and Wheelock, M.M. (1994) Antarctic J, United States, 29, in press.Google Scholar
Marsh, B.D., Gunnarsson, B., Congdon, R. and Carmody, R. (1991) Geologische Rundschau, 80(2), 481-510CrossRefGoogle Scholar
McBirney, A.R. (1980) J. Volcan. Geotherm. Res., 7 357–71CrossRefGoogle Scholar
McBirney, A.R. (1984) Igneous Petrology. Freeman, Cooper & Company, 504 pp.Google Scholar
McBirney, A.R. (1995) J. Geol. Soc., London, 152, 421–35.CrossRefGoogle Scholar
McBirney, A.R. and Hunter, R.H. (1995) in preparation.Google Scholar
McBirney, A.R. and Noyes, R.M. (1979) J. Petrol., 20(3), 487-554.CrossRefGoogle Scholar
McCormick, K.A. and Marsh, B.D. (1995) EOS, in press.Google Scholar
McDougall, I. (1962) Geol. Soc. Amer. Bull., 73, 279316.CrossRefGoogle Scholar
McDougall, I. (1964) J. Geol, Soc, Austral., 11, 107–43.CrossRefGoogle Scholar
Morse, S.A. (1987) Earth Planet. Sci. Lett. 81 118—26.CrossRefGoogle Scholar
Murata, K.J. and Richter, D.H. (1966) Amer. J. Sci., 264, 194203.CrossRefGoogle Scholar
Myers, J.D., Marsh, B.D. and Sinha, A.K. (1985) Contrib. Mineral. Petrol., 91(3), 221—34.CrossRefGoogle Scholar
Navon, D. and Stolper, E. (1987) J. Geol., 95, 285307.CrossRefGoogle Scholar
Osborne, F.F. and Roberts, E.J. (1931) Amer. J. Sci., 22, 331–53.CrossRefGoogle Scholar
Oskarsson, N., Sigvaldason, G.E. and Steinthorsson, S. (1982J J. Petrol., 23, 2874.CrossRefGoogle Scholar
Pallister, J.S. and Hopson, C.A. (1981) J. Geophys. Res., 86(B4), 2593-644.Google Scholar
Paradies, C.J. and Glicksman, M.E. (1992). In Interactive Dynamics of Convection and SolidificationVol. 219 (S.H. Davis, H.H. Huppert, U. Muller and M.G. Worster, eds.), Kluwer Academic Publishers, pp. 81-92.Google Scholar
Parmentier, E.M. and Phipps Morgan, J. (1990) Nature, 348, 325–8.CrossRefGoogle Scholar
Parsons, I. and Becker, S.M. (1987). In Origins of Igneous Layering(I. Parsons, ed.), Reidel Publishing Company, pp. 29—92.CrossRefGoogle Scholar
Perfit, M.R., Fornari, D.J., Smith, M.C., Bender, J.F., Langmuir, C.H. and Haymon, R.M. (1994) Geology, 22, 375–9.2.3.CO;2>CrossRefGoogle Scholar
Peterson, D.W. and Moore, R.B. (1987). In Volcanism in Hawaii Vol. 1 (R.W. Decker, T.L. Wright and P.H. Stauffer, eds.), U.S. Government Printing Office, pp. 149-90.Google Scholar
Philpotts, A.R. (1982) Contrib. Mineral. Petrol., 80, 201-18.CrossRefGoogle Scholar
Phipps Morgan, J. and Chen, Y.J. (1993a) Nature, 364, 706–8.CrossRefGoogle Scholar
Phipps Morgan, J.P. and Chen, Y.J. (1993^) J. Geophys. Res., 98(B4), 6283-97.Google Scholar
Pippard, A.B. (1985) Response and Stability: An Introduction to the Physical Theory. Cambridge University Press, 228 pp.Google Scholar
Pirsson, L.V. (1905) United States Geological Survey Bulletin no 237. Google Scholar
Powers, H.A. (1955) Geochim. Cosmochim. Acta, 7, 77107.CrossRefGoogle Scholar
Quick, J.E. and Denlinger, R.P. (1993) J. Geophys, Res., 98(B8), 14015-27.Google Scholar
Ragland, P.C. and Arthur, J.D. (J985) Proceedings of the Second US Geological Survey Workshop on the Early Mesozoic Basins of the Eastern United States, 91—99.Google Scholar
Resmini, R.G. and Marsh, B.D. (1995) J. Volcan. Geotherm. Res. in press.Google Scholar
Richardson, S.H. (1979) Geochim. Cosmochim. Acta, 43, 1433–41.CrossRefGoogle Scholar
Rudek, E.A., Fodor, R.V. and Bauer, G.R. (1992) Bull. Volcan., 55, 7484.CrossRefGoogle Scholar
Russell, J.K. and Stanley, C.R. (1990) J. Geophys. Res., 95(B4), 5021-47.Google Scholar
Ryan, M.P. (1988) J. Geophys. Res., 93(B5), 4213—48.Google Scholar
Ryan, M.P. (1990) In Magma Transport and Storage (M.P. Ryan, ed.), John Wiley & Sons. pp. 175—224.Google Scholar
Ryan, M.P. (1994). In Magmatic Systems(M. P. Ryan, ed.), Academic Press, Inc. pp. 97—138.Google Scholar
Ryerson, F.J., Weed, H.C. and Piwinskii, A.J. (1988) J. Geophys, Res., 93fB4), 3421—36.Google Scholar
Saffman, P.G. (1965) J. Fluid Mech., 22(2), 385-400. Schwindinger, K.R. (1987) Petrogenesis of olivine aggregates from the 1959 eruption of Kilauea Iki: Synneusis and magma mixing. Ph.D. Thesis, University of Chicago, 212 pp.CrossRefGoogle Scholar
Schwindinger, K.R. and Anderson, A.T. (1989) Contrib. Mineral. Petrol., 103f 187—98.CrossRefGoogle Scholar
Schwindinger, K.R. and Marsh, B.D. (1995) Trans. Amer. Geophys. Union, 75(16), 354.Google Scholar
Segre, G. and Silberberg, A. (1962) J. Fluid Mech., 14, 115–57.CrossRefGoogle Scholar
Shaw, H.R. (1965) Amer. J. Sci., 263, 120–52.CrossRefGoogle Scholar
Shaw, H.R. (1969) J. Petrol, 10(3), 510-35. Sigurdsson, H, (1977) Nature, 269(5623), 25—28.CrossRefGoogle Scholar
Simkin, T. (1967). In Ultramafic and Related Rocks (P.J. Wyllie, ed.), John Wiley and Sons. pp. 64—69.Google Scholar
Sinton, J.M. and Detrick, R.S. (1992) J. Geophys. Res., 97(BJ), 197-216.Google Scholar
Smith, R.C., Rose, A.W. and Lanning, R.M. (1975) Geol. Soc. Amer. Bull., 86, 943–55.2.0.CO;2>CrossRefGoogle Scholar
Spulber, S.D., Rutherford, M. and Malcolm, J. (1983) J. Petrol., 24(1), 125.CrossRefGoogle Scholar
Stolper, E. (1980) Contrib. Mineral. Petrol; 74, 13—27.Google Scholar
Tegner, C., Wilson, J.R. and Brooks, C.K. (1993) J. Petrol., 34(4), 681-710.CrossRefGoogle Scholar
Upton, B.G. and Wadsworth, W.J. (1967) Amer. Mineral.., 52, 1475–92.Google Scholar
Vogel, T.A. and Wilband, J.T. (1978) J. Geol., 86, 353–71.CrossRefGoogle Scholar
Vogt, J.H. (1921) J. Geol., 29, 318–50.CrossRefGoogle Scholar
Wager, L.R. and Deer, W.A. (1939) Kangerdlagssuaq, East Greenland, Medd om Groenland, 105 (4).Google Scholar
Walker, D., Shibata, T. and DeLong, S.E. (1979) Contrib. Mineral. Petrol., 70, 111–25.CrossRefGoogle Scholar
Wheelock, M.M. and Marsh, B.D. (1993) Antarctic J. United States, 28, 1921.Google Scholar
Wheelock, M.M. and Marsh, B.D. (1994) Geol Soc. America, Abstracts with Programs, 26, A370.Google Scholar
White, C.M., Geist, D.J., Frost, C.D. and Verwoerd, W.J. (1989) J. Petrol., 30, 271–98.CrossRefGoogle Scholar
Worster, M.G., Huppert, H.E. and Sparks, R.S. (1990) Earth Planet. Sci. Lett., 101, 7889.CrossRefGoogle Scholar
Worster, M.G., Huppert, H.E. and Sparks, R.S. (1993) J. Geophys. Res., 98(B9), 15891-901.Google Scholar
Wright, T.L. (1971) U.S. Geol. Surv. Prof. Pap.no. 735. Wright, T.L. and Fiske, R.S. (1971) J. Petrol., 12(1), 1-65.Google Scholar
Wright, T.L. and Okamura, R.T. (1977) U.S. Geol. Surv. Prof. Pap.no. 1004.Google Scholar