Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T23:37:02.732Z Has data issue: false hasContentIssue false

Single crystal galena pillars as highly anisometric dissolution forms

Published online by Cambridge University Press:  05 July 2018

Ivan K. Bonev
Affiliation:
Geological Institute, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Clive M. Rice
Affiliation:
Department of Geology & Petroleum Geology, University of Aberdeen, Meston Building, Kings College, Aberdeen AB24 3UE, UK

Abstract

Remarkable single crystal galena formations in the unique form of cylindrical or steep conical ‘pillars’ with ‘capitals’ of small rhombododecahedral single crystals of sphalerite, are described. It is suggested that the pillars result from a highly specific process of anisotropic mineral dissolution controlled by a system of internal channels in the original skeletal crystals and represent a kind of dissolution whiskers.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G.M. (1962) The solubility of PbS in H2Swater solutions. Econ. Geol., 57, 809-28.CrossRefGoogle Scholar
Badikov, V.V. and Godovikov, A.A. (1966) Morphological features of galena crystals, obtained in hydrothermal conditions. Zapiski Vses. Mineral. Obshchestva 95, 526-36.(in Russian).Google Scholar
Barnes, H.L. (1979) Solubility of ore minerals. In Geochemistry qf Hydrothermal Ore Deposits, 2nd edition (Barnes, H.L., ed.) Wiley-Interscience, New York, 404-60.Google Scholar
Barret, T.J. and Anderson, G.M. (1988) The solubility of sphalerite and galena in 1-5 M NaCI solutions to 300°C. Geochim. Cosmochim. Acta, 52, 813-20.CrossRefGoogle Scholar
Boney, I.K. (1977) Primary fluid inclusions in galena crystals. I. Morphology and origin. Mineralium Deposita 12, 6476.Google Scholar
Bonev, I. (1980) Crystal morphology of galena from the Central Rhodopes lead-zinc deposits. Growth forms. Geologica Balcanica 10, 3356.(in Russian with English abstract).Google Scholar
Bonev, I. (1992) Dissolution and regeneration of galena crystals from the Rhodope Mountains. 29th Intern. Geol. Congr., Kyoto, Japan. Abstracts II-14-3, 0-5, p. 681.Google Scholar
Bonev, I.K. (1993) Non-equilibrium highly anisometric crystals and whiskers of galena. Mineral. Mag. 57, 231-40.CrossRefGoogle Scholar
Brimhall, G.H. and Crerar, D.A. (1987) Ore fluids: Magmatic to supergene. Reviews in Mineral., 17, 235321.Google Scholar
Cabrera, N. and Levine, M.M. (1956) On the dislocation theory of evaporation of crystals. Phil. Mag., 1, 450-8.CrossRefGoogle Scholar
Chernov, A.A. (1984) Modern Crystallography, HL Crystal Growth. Springer-Verlag, Heidelberg. 517 pp.Google Scholar
Cledenin, C.W. (1977) Suggestions for interpreting Viburnum Trend mineralization based on field studies at Ozark Lead Company, southeast Missour. Econ. Geol.. 72, 465-73.CrossRefGoogle Scholar
Cowdry, S. (1995) Stalactitic galena from Lamb Bottom, Mendip Hills, Somerset, England. J. Russell Soc., 6, 3740.Google Scholar
Garcia-Ruiz, J.M. (1986) Growth history of PbS single crystals at room temperature. J. Cryst Growth, 75, 441-53.CrossRefGoogle Scholar
Giordano, T.H. and Barnes, H.L. (1979) Ore soltlron chemistry VI. PbS solubility in bisulfide soivtions to 300°C. Econ. Geol. 74, 1637-46.CrossRefGoogle Scholar
Givargizov, E.I. (1986) Highly Anisotropic Crystals. Reidel, Dodrecht/Terra Sci. PUN., Tokyo, 392pp.Google Scholar
Grigoriev, D.P. (1965) Onmgeny of Minerals. Israel Program for Scientific Translations, Jerusalem, 250 pp.Google Scholar
Heimann, R.B. (1975) Auflösung von Kristallen. Theorie und technische Anwendung. Springer-Verlag, Wien-New York.CrossRefGoogle Scholar
Khetchikov, L.N. (1960) Geological structure and mineralogy of the Pervii Sovetskii Rudnik deposit (Tetyukhe). Materials on Geology, Ores and Mineralogy of the Southern Part of the Far East. Acad. of Sciences of USSR, Moscow-Leningrad, 53167 (in Russian).Google Scholar
Lacy, W.C. and Hosmer, H.L. (1956) Hydrothermal leaching in Central Peru. Econ. Geol. 69, 9921006.Google Scholar
Lasaga, A.C. and Blum, A.E. (1986) Surface chemistry, etch pits and mineral-water reactions. Geochim. Cosmochim. Acta 50, 2363-79.CrossRefGoogle Scholar
Lasmanis, R. (1989) Galena from Mississippi Valleytype deposits. Rocks & Minerals 64, 1134.CrossRefGoogle Scholar
McKnight, E.T. and Fischer, R.P. (1970) Geology and ore deposits of the Picher field, Oklahoma and Kansas. U.S. Geol. Survey Prqf Paper 588. CrossRefGoogle Scholar
Motyka, J. and Szuwarzynski, M. (1989) Growth of speleotherms below the karst water table: consideration of the genesis of sulphide stalactites from the Upper Silesian Zn-Pb ore bodies. Ann. Soc. Geol. Poloniae 59, 417-33.Google Scholar
Rafalsky, R.P. and Massalovich, A.P. (1981) Experimental estimation of instability constant of lead chloride complexes at increased temperatures. Geokhimia 12, 1868-85.Google Scholar
Sangwal, K. (1987) Etching of Crystals. Theory, Experiment and Application. Series Defects in Solids (Amelinckx, S. and Nikhoul, J., eds.), 15, North-Holland, Amsterdam, 497 pp.Google Scholar
Seward, T.M. (1984) The formation of lead (II) chloride complexes to 300°C: A spectrophotometric study. Geochim. Cosmoehim. Acta, 48, 121-34.CrossRefGoogle Scholar
Sunagawa, I. (1993) ln-situ investigation on growth and dissolution of crystals in aqueous solution. Aquatic Sciences, 55, 348-57.CrossRefGoogle Scholar
Sunagawa, I. (1994) Nucleation, growth and dissolution of crystals during sedimentogenesis and diagenesis. Chapter 2 in Diagenesis, IV. Developments in Sedimentology (Wolf, K.H. and Chilingarian, G.V., eds.), 51, Elsevier, Amsterdam, 1947.Google Scholar
Thompson, T.B. and Arehart, G.B. (1990) Geology and origin of ore deposits in the Leadville district, Colorado: Part 1= Geologic studies of ore bodies and wall rocks. Econ. Geol. Monograph 7 130-55.Google Scholar