Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T08:19:59.871Z Has data issue: false hasContentIssue false

Rhyodacite glass in Réunion basalt

Published online by Cambridge University Press:  05 July 2018

B. G. J. Upton
Affiliation:
Grant Institute of Geology, University of Edinburgh
W. J. Wadsworth
Affiliation:
Department of Geology, University of Manchester

Summary

The local development of strongly oxidizing conditions during crystallization of a recent basalt lava lake on Piton de la Fournaise, Réunion, led to the production of approximately 15 % residual rhyodacite liquid. This was segregated into the vesicle cavities as the lava solidified, and congealed as a glass containing microlites of feldspar, clinopyroxene, and hematite. The rhyodacite is compared chemically with the residual glasses recorded from other basaltic and doleritic occurrences, and with the Mauna Kuwale rhyodacite of Oahu.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert De Lg Rue, (E.), 1965. Le Piton de la Fournaise, Volcan actif de File de la Réunion. Bull. Voleanologique, 28, 31.I-20.Google Scholar
Bussiere, (P.), 1958. Etude gélogique de l'île de la Réunion. Travaux du Bureau Géologique de Madagascar, 84.Google Scholar
Ducrôt, (M.), 1958. Le volcan de la Réunion (1952-1957). Ibid. 85.Google Scholar
Elliot'r, (R. B.), 1956. The Eskdalemuir tholeiite and its contribution to an understanding of tholeiite genesis. Min. Mag. 31,245-54.Google Scholar
Hagoertv, (S.E.) and Baker, (I.), 1967. The alteration of olivine in basaltic and associated lavas. Part I: High temperature alteration. Contr. Min. Petr. 16, 233.57.Google Scholar
Hamilton, (D.L.), Burnham, (C.W.), and Osborn, (E.F.), 1964. The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. Journ. Petrology, 5, 21.39.Google Scholar
Harker, (A.), 1904. The Tertiary igneous rocks of Skye. Mem. geol. Surv. Scotland.CrossRefGoogle Scholar
Kuno, (H.), 1965. Fractionation trends of basalt magmas in lava flows. Journ. Petrology, 6, 302.21.Google Scholar
Kuno, (H.), Yamaasaki, (K.), Ida, (C.), and Nagashima, (K.), 1957. Differentiation of Hawaiian magmas. Japanese Journ. Geol. Geogr. 28, 179218.Google Scholar
Lacroix, (A.), 1936. Le volcan actif de ITle de la Rdunion et ses produits. Gauthier-Villars, Paris.Google Scholar
Lacroix, (A.), 1938. Le volcan actif de ITle de la Rdunion (Suppldment) et celui de la Grande Comore. Gauthier- Villars, Paris.Google Scholar
Macdonald, (G.A.) and Katsura, (T.), 1964. Chemical composition of Hawaiian lavas. Yourn. Petrology 5, 82.I33.Google Scholar
Moore, (J.G.), 1965. Petrology of deep-sea basalt near Hawaii. Amer. Journ. Sci. 263, 40.52.Google Scholar
Neumann VAN PADANG, (M.), 1963. Catalogue of Active Volcanoes, 16, Arabia and the Indian Ocean.Google Scholar
Nicholls, (G.D.), 1959. Autometasomatism in the Lower Spilites of the Builth volcanic series. Quart. Journ. geol. Soc. 114, 137-62.CrossRefGoogle Scholar
Nockolds, (S.R.), 1954. Average chemical compositions of some igneous rocks. Bull. geol. Soe. Amer. 65, 1007-32.CrossRefGoogle Scholar
Osborn, (E.F.), 1962. Reaction series for subalkaline igneous rocks based on different oxygen pressure relationships. Amer. Min. 47, 21.1-26.Google Scholar
Smith, (R.E.), 1967. Segregation vesicles in basaltic lava. Amer. Journ. Sci. 265, 696.715.Google Scholar
Upton, (B. G. J.) and Wadsworth, (W.J.), 1965. The basalts of Réunion Island, Indian Ocean. Bull. volcanique, 29, 7.24.Google Scholar
Upton, (B. G. J.) and Wadsworth, (W.J.), (in press). Aspects of Magmatic Evolution on Réunion Island. Phil. Trans.Google Scholar
Vincent, (E.A.), 1950. The chemical composition and physical properties of the residual glass of the Kap Daussy tholeiite dyke, east Greenland. Min. Mag. 29, 46.62.Google Scholar
Walker, (F.), VINCENT (H. G. C.), and Mitchell, (R.L.), 1952. The chemistry and mineralogy of the Kinkell tholeiite, Stirlingshire. Ibid. 895-908.CrossRefGoogle Scholar
Wilkinson, (J. F. G.), 1966. Residual glasses from some alkali basalts from New South Wales. Ibid. 35, 847.60.Google Scholar
Yoder, (H.S.) and Tilley, (C.E.), 1962. Origin of basalt magmas; an experimental study of natural and synthetic rock systems. Journ. Petrology, 3, 34.-532.Google Scholar