Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T19:55:41.510Z Has data issue: false hasContentIssue false

Ralphcannonite, AgZn2TlAs2S6, a new mineral of the routhierite isotypic series from Lengenbach, Binn Valley, Switzerland

Published online by Cambridge University Press:  02 January 2018

Luca Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I-50121 Firenze, Italy
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, Italy
Thomas Raber
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, Germany
Philippe Roth
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Ilanzhofweg 2, CH-8057 Zurich, Switzerland
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy
*

Abstract

The new mineral species ralphcannonite, AgZn2TlAs2S6, was discovered in the Lengenbach quarry, Binn Valley, Wallis, Switzerland. It occurs as metallic black equant, isometric to prismatic crystals, up to 50 μm, associated with dufrénoysite, hatchite, realgar and baryte. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 25.8/27.1; 548.3: 25.2/26.6; 586.6: 24.6/25.8; 652.3: 23.9/24.8. Electron microprobe analyses give (wt.%): Cu 2.01(6), Ag 8.50(16), Zn 10.94(20), Fe 3.25(8), Hg 7.92(12), Tl 24.58(26), As 18.36(19), Sb 0.17(4), S 24.03(21), total 99.76(71). On the basis of 12 atoms per formula unit, the chemical formula of ralphcannonite is Ag0.63(2)Cu0.25(2)Zn1.35(5)Fe0.47(1)Hg0.32(2)Tl0.97(3)[As1.97(6)Sb0.01(1)]Σ1.98(5)S6.03(8). The new mineral is tetragonal, space group I42m, with a = 9.861 (2), c = 11.125(3) Å, V = 1081.8(4) Å3, Z = 4. The main diffraction lines of the calculated powder diagram are [d (in Å), intensity, hkl]: 4.100, 85, 211; 3.471, 40, 103; 2.954, 100, 222; 2.465, 24, 400; 2.460, 39, 303. The crystal structure of ralphcannonite has been refined by X-ray single-crystal data to a final R1 = 0.030, on the basis of 140 observed reflections [Fo > 4σ(Fo)]. It shows a three dimensional framework of (Ag,Zn)-centred tetrahedra (1 M1 + 2 M2), with channels parallel to [001] hosting TlS6 and (As,Sb)S3 disymmetric polyhedra. Ralphcannonite is derived from its isotype routhierite M1CuM2Hg2TlAs2S6 through the double heterovalent substitution M1Cu+ + M2Hg2+M1Zn2+ + M2Ag+. This substitution obeys a steric constraint, with Ag+, the largest cation relative to Zn2+ and Cu+, entering the largest M2 site, as observed in arsiccioite. The ideal crystal-chemical formula of ralphcannonite is M1ZnM2(Zn0.5Ag0.5)2TlAs2S6.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biagioni, C, Bonaccorsi, E., Moelo, Y andOrlandi, P. (2014a) Mercury-arsenic sulfosalts from Apuan Alps (Tuscany, Italy). I. Routhierite, (Cu0 8Ag0 2)Hg2Tl (Asi.4Sb0.6)s=2S6, from Monte Arsiccio mine: occurrence and crystal structure. European Journal of Mineralogy, 26, 163170.CrossRefGoogle Scholar
Biagioni, C, Bonaccorsi, E., Moelo, Y, Orlandi, P., Bindi, L., D'Orazio, M. and Vezzoni, S. (20146) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series. Mineralogical Magazine, 78, 101117.CrossRefGoogle Scholar
Biagioni, C, Bonaccorsi, E., Moelo, Y andOrlandi, P. (2014c) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). III. Aktashite, Cu6Hg3As4Si2, and laffittite, AgHgAsS3 from the Monte Arsiccio mine: occurrence and crystal structure. Periodico di Mineralogia, 83, 118.Google Scholar
Bindi, L. (2008) Routhierite, Tl(Cu,Ag)(Hg,Zn)2(As, Sb)2S6. Ada Crystallographica, C64, 195196.Google Scholar
Bindi, L., Nestola, E, Guastoni, A., Peruzzo, L., Ecker, M. and Carampin, R. (2012) Raberite, Tl5Ag4As6SbSi5, a new Tl-bearing sulfosalt from Lengenbach quarry, Binn Valley, Switzerland: description and crystal structure. Mineralogical Magazine, 76, 11531163.CrossRefGoogle Scholar
Bindi, L., Nestola, E, Makovicky, E., Guastoni, A. and Debattisti, L. (2014) Tl-bearing sulfosalt from Lengenbach quarry, Binn Valley, Switzerland: Philrothite, TlAs3S5 . Mineralogical Magazine, 78, 19.CrossRefGoogle Scholar
Bindi, L., Biagioni, C, Raber, T, Roth, P. and Nestola, E (2015) Ralphcannonite, IMA 2014-077. CNMNC Newsletter No. 23, February 2015, page 56. Mineralogical Magazine, 79, 5158.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192197.Google Scholar
Burri, G., Graeser, S., Marumo, F. and Nowacki, W. (1965) Imhofit, ein neues thallium-arsensulfosalz aus dem Lengenbach (Binnatal, Kanton Wallis). Chimia, 19, 499500.Google Scholar
Favreau, G., Bourgoin, V andBoulliard, J.C. (2011) Jas Roux: un gisement exceptionel a mineraux de thallium. Le Cahier des Micromonteurs, 113, 291.Google Scholar
Graeser, S. (1967) Ein Vorkommen von Lorandit (TlAsS2) der Schweiz. Contributions to Mineralogy and Petrology, 16, 4550.CrossRefGoogle Scholar
Graeser, S. and Edenharter, A. (1997) Jentschite (TlPbAs2SbS6)-a new sulphosalt mineral from Lengenbach, Binntal (Switzerland). Mineralogical Magazine, 61, 131137.CrossRefGoogle Scholar
Graeser, S. and Schwander, H. (1992) Edenharterite (TlPbAs3Sg): a new mineral from Lengenbach, Binntal (Switzerland). European Journal of Mineralogy, 4, 12651270.CrossRefGoogle Scholar
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1992) Ernigglite (Tl2SnAs2S6), a new mineral from Lengenbach, Binntal (Switzerland): description and crystal structure determination based on data from synchrotron radiation. Schweizerische Mineralogische und Petrographische Mitteilungen, 72, 293305.Google Scholar
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1995) Stalderite, TlCu(Zn,Fe,Hg)2As2S6-a new mineral related to routhierite: description and crystal structure. Schweizerische Mineralogische und Petrographische Mitteilungen, 75, 337345.Google Scholar
Graeser, S., Berlepsch, P., Makovicky, E. and Balic-Zunic, T. (2001) Sicherite, TlAg2(As,Sb)3S6, anew sulfosalt mineral from Lengenbach (Binntal, Switzerland): description and structure determination. American Mineralogist, 86, 10871093.CrossRefGoogle Scholar
Graeser, S., Topa, D., Balic-Zunic, T. and Makovicky, E. (2007) Gabrielite, Tl2AgCu2As3S7, a new species of thallium sulfosalt from Lengenbach, Binntal, Switzerland. The Canadian Mineralogist, 44, 135140.CrossRefGoogle Scholar
Graeser, S., Cannon, R., Drechsler, E., Raber, T. and Roth, P. (2008) Faszination Lengenbach Abbau-Forschung-Mineralien 1958-2008. Kristallographik Verlag, Achberg, Germany, pp. 192.Google Scholar
Graeser, S., Topa, D., Effenberger, H., Makovicky, E. and Paar, W.H. (2014) Spaltiite, IMA 2014-012. CNMNC Newsletter No. 20, June 2014, page 557. Mineralogical Magazine, 78, 549558.Google Scholar
Harris, D.C. (1989) The Mineralogy and Geochemistry of theHemlo Gold Deposit, Ontario. Economic Geology Reports, 38. Geological Survey of Canada, Ottawa.CrossRefGoogle Scholar
Hofmann, B.A. and Knill, M.D. (1996) Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba mineralization, Binn Valley, Switzerland. Mineralium Deposita, 31, 319339.CrossRefGoogle Scholar
Hofmann, B.A., Graeser, S., Imhof, T., Sicher, V andStalder, H.A. (1993) Mineralogie der Grube Lengenbach, Binntal, Wallis. Zum 35-jahrigen Bestehen der Arbeitsgemeinschaft Lengenbach. Jahrbuch Naturhistorische Museum Bern, 1990—1992, 390.Google Scholar
Johan, Z., Mantienne, J. and Picot, P. (1974) La routhierite, TlHgAsS3, et la laffittite, AgHgAsS3, deux nouvelles especes minerales. Bulletin de la Societe francaise de Mineralogie et de Cristallographie, 97, 4853.Google Scholar
Kraus, W andNolze, G. (1996) PowderCell-a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Makovicky, E., Forcher, K., Lottermoser, W andAmthauer, G. (1990) The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineralogy and Petrology, 43, 7381.CrossRefGoogle Scholar
Marumo, F. and Burri, G. (1965) Nowackiite, a new copper zinc arsenosulfosalt from Lengenbach (Binnatal, Kanton Wallis). Chimia, 19, 500501.Google Scholar
Moelo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Moller, S., Balic-Zunic, T, Mumme, W.G., Vurro, F, Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Nestola, F, Guastoni, A., Bindi, L. and Secco, L. (2009) Dalnegroite, Tl5_xPb2x(As,Sb)21_xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Switzerland. Mineralogical Magazine, 73, 10271032.CrossRefGoogle Scholar
Nowacki, W (1965) Uber einige Mineralfunde aus dem Lengenbach (Binnatal, Kt. Wallis). Eclogae Geologicae Helveticae, 58, 403406.Google Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in Crys Alis RED. Oxford Diffraction Ltd, Abingdon, UK.Google Scholar
Roth, P., Raber, T, Drechsler, E. and Cannon, R. (2014) The Lengenbach Quarry, Binn Valley, Switzerland. The Mineralogical Record, 45, 157196.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Ada Crystallographica, A64, 112—122.Google Scholar
Solly, R.H. (1905) Some new minerals from the Binnenthal, Switzerland. Mineralogical Magazine, 14, 7282.CrossRefGoogle Scholar
Solly, R.H. and Smith, G.F.H. (1912) Hatchite, a new (anorthic) mineral from the Binnenthal. Mineralogical Magazine, 16, 287289.CrossRefGoogle Scholar
Wilson, AJ.C. (editor) (1992) International Tables for X-ray Crystallography Volume C Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar