Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T19:44:08.519Z Has data issue: false hasContentIssue false

Paratacamite-(Mg), Cu3(Mg,Cu)Cl2(OH)6; a new substituted basic copper chloride mineral from Camerones, Chile

Published online by Cambridge University Press:  05 July 2018

A. R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
M. J. Sciberras
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia
P. Leverett
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia
P. A. Williams
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia
T. Malcherek
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
J. Schlüter
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
M. D. Welch
Affiliation:
Mineral and Planetary Sciences Division, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
M. Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
A. A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
*

Abstract

Paratacamite-(Mg) (IMA 2013-014), Cu3(Mg, Cu)Cl2(OH)6, is the new Mg-analogue of paratacamite. It was found near the village of Cuya in the Camarones Valley, Arica Province, Chile. The mineral is a supergene secondary phase occurring in association with anhydrite, atacamite, chalcopyrite, copiapite, dolomite, epsomite, haydeeite, hematite, magnesite and quartz. Paratacamite-(Mg) crystals are rhombs and thick to thin prisms up to 0.3 mm in size exhibiting the forms {201} and {001}. Twinning by reflection on {10} is common. The mineral is transparent with a vitreous lustre, with medium to deep-green colour and light-green streak. Mohs hardness is 3–3½, the tenacity is brittle and the fracture is conchoidal. Paratacamite-(Mg) has one perfect cleavage on {201}. The measured and calculated densities are 3.50(2) and 3.551 g cm–3, respectively. The mineral is optically uniaxial (–) with ε = 1.785(5) and ω > 1.8 and slight pleochroism: O (bluish green) > E (green). Electron-microprobe analyses provided the empirical formula Cu3(Mg0.60Cu0.38Ni0.01Mn0.01)Cl2(OH)6. The mineral is easily soluble in dilute HCl. Paratacamite-(Mg) is trigonal, R, with cell parameters a = 13.689(1), c = 14.025(1) Å, V = 2275.8(3) Å3 and Z = 12. There is a pronounced sub-cell corresponding to a'½a, c'c in space group Rm. The eight strongest lines in the X-ray powder diffraction pattern are [dobs Å(I)(hkl)]: 5.469(87)(021), 4.686(26)(003), 2.904(34)(401), 2.762(100)(22,042), 2.265(81)(404), 1.819(26)(603), 1.710 (34)(440) and 1.380(19)(446). The structure was refined to R1 = 0.039 for 480 Fo > 4σF reflections. Refinement using interlayer Mg-Cu site scattering factors indicated that Mg is distributed statistically between both interlayer octahedra M1O6 and M2O6. A comparison of the distortions associated with M1O6 and M2O6 octahedra suggest that the sample is near the upper compositional limit for stability of the R phase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Braithwaite, R.S.W., Mereiter, K., Paar, W.H. and Clark, A.M. (2004) Herbertsmithite , Cu3Zn(OH)6Cl2, a new species, and the definition of paratacamite. Mineralogical Magazine, 68, 527539.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.Google Scholar
Chu, S., Müller, P., Nocera, D.G. and Lee, Y.S. (2011) Hydrothermal growth of single crystals of the quantum magnets: clinoatacamite, paratacamite and herbertsmithite. Applied Physics Letter, 98, 092508.CrossRefGoogle Scholar
Clissold, M.E., Leverett, P. and Williams, P.A. (2007) The structure of gillardite, the Ni-analogue of herbertsmithite, from Widgiemooltha, Western Australia. The Canadian Mineralogist, 45, 317320.CrossRefGoogle Scholar
Colchester, D.M., Leverett, P., Clissold, M.E., Williams, P.A., Hibbs, D.E. and Nickel, E.H. (2007) Gillardite, Cu3NiCl2(OH)6, a new mineral from the 132 North deposit, Widgiemooltha, Western Australia. Australian Journal of Mineralogy, 13, 1518.Google Scholar
Colman, R.H., Sinclair, A. and Wills, A.S. (2011) Magnetic and crystallographic studies of Mgherbertsmithite, g-Cu3Mg(OH)6Cl2 – a new S = 1/2 Kagome magnet and candidate spin liquid. Chemistry of Materials, 23, 18111817.CrossRefGoogle Scholar
Fleet, M.E. (1975) The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, B31, 183187.CrossRefGoogle Scholar
Frondel, C. (1950) On paratacamite and some related copper chlorides. Mineralogical Magazine, 29, 3445.CrossRefGoogle Scholar
Grice, J.D., Szymański, J.T. and Jambor, J.L. (1996) The crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. The Canadian Mineralogist, 34, 7378.Google Scholar
Hannington, M.D. (1993) The formation of atacamite during weathering of sulfides on the modern seafloor: The Canadian Mineralogist, 31, 945956.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Hawthorne, F.C. (1985) Refinement of the crystal structure of botallackite. Mineralogical Magazine, 49, 8789.CrossRefGoogle Scholar
Helton, J.S., Matan, K., Shores, M.P., Nytko, E.A., Bartlett, B.M., Yoshida, Y., Takano, Y., Qiu, Y., Chung, J.H., Nocera, D.G. and Lee, Y.S. (2007) Spin dynamics of the Spin-– kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Physical Review Letters, 98, 107204107208.CrossRefGoogle ScholarPubMed
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Jambor, J.L., Dutrizac, J.E., Roberts, A.C., Grice, J.D. and Szymański, J.T. (1996) Clinoatacamite, a new polymorph of Cu2(OH)3Cl, and its relationship to paratacamite and “anarakite”. The Canadian Mineralogist, 34, 6172.Google Scholar
Kampf, A.R., Mills, S.J., Nash, B.P., Housley, R.M., Rossman, G.R. and Dini, M. (2013a) Camaronesite, [Fe3+(H2O)2(PO3OH)]2(SO4)·1–2H2O, a new phosphate- sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineralogical Magazine, 77, 453465.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Williams, P.A. and Dini, M. (2013b) Leverettite from the Torrecillas mine, Iquique Provence, Chile: the Co-analogue of herbertsmithite. Mineralogical Magazine, 77 30473054.CrossRefGoogle Scholar
Kracher, A. and Pertlik, F. (1983) Zinkreicher Paratacamit, Cu3Zn(OH)6Cl2, aus der Herminia Mine, Sierra Gorda, Chile. Annalen des Naturhistorischen Museums in Wien, 85/A, 9397.Google Scholar
Krause, W., Bernhardt, H.-J., Braithwaite, R.S.J., Kolitsch, U. and Pritchard, R. (2006) Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Laurion, Greece, and its crystal structure. Mineralogical Magazine, 70, 329340.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2007) Cu3MgCl2(OH)6, and the bond-valence parameters of the OH–Cl bond. Acta Crystallographica, B63, 157160.CrossRefGoogle Scholar
Malcherek, T. and Schlüter, J. (2009) Structures of the pseudo-trigonal polymorphs of Cu2(OH)3Cl. Acta Crystallographica, B65, 334341.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Materials Data, Inc. (2011) JADE 2010. Materials Data Incorporated, Livermore, California, USA.Google Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Nespolo, M. and Ferarris, G. (2006) The derivation of twin laws in non-merohedric twins. Application to the analysis of hybrid twins. Acta Crystallographica, A62, 336349.CrossRefGoogle Scholar
Reich, M., Palacios, C., Parada, M.A., Fehn, U., Cameron, E.M., Leybourne, M.I. and Zún˜ iga, A. (2008) Atacamite formation by deep saline waters in copper deposits from the Atacama Desert, Chile: evidence from fluid inclusions, groundwater geochemistry,, TEM, and 36Cl data. Mineralium Deposita, 43, 663675.CrossRefGoogle Scholar
Reich, M., Palacios, C., Vargas, G., Luo, S., Cameron, E.M., Leybourne, M.I., Parada, M.A., Zún˜ iga, A. and You, C.-F. (2009) Supergene enrichment of copper deposits since the onset of modern hyperaridity in the Atacama Desert, Chile. Mineralium Deposita, 44, 497504.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedral. Science, 172, 567570.CrossRefGoogle Scholar
Salas, R.O. (1964) Breve informe de una visita realizada a los cateos de sulfato de hierro, en la zona de Cuya, Quebrada de Camarones, Arica. Instituto de Investigaciones Geoló gicas, Arica, Chile.Google Scholar
Salas, R.O. (1965) Informe preliminar de la Mina Minerva, Quebrada de Camarones, departamento de Arica. Instituto de Investigaciones Geológicas, Arica, Chile.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sciberras, M.J., Leverett, P., Williams, P.A., Hibbs, D.E., Downes, P.J., Welch, M.D. and Kampf, A.R. (2013) Paratacamite-(Ni), Cu3(Ni,Cu)Cl2(OH)6, a new mineral from the Carr Boyd Rocks mine, Western Australia. Australian Journal of Mineralogy, in press.Google Scholar
Smith, G.F.H. (1906) Paratacamite, a new oxychloride of copper. Mineralogical Magazine, 14, 170177.CrossRefGoogle Scholar
Thomas, A. (1971) Geología del área de Chilpe, Camarones – Arica. La Empresa Nacional de Minería (ENAMI), Santiago.Google Scholar
Welch, M.D., Sciberras, M.J., Leverett, P., Williams, P.A. Schlüter, J. and Malcherek, T. (2013) A temperature-induced reversible transformation between paratacamite and herbertsmithite. Physics and Chemistry of Minerals,, DOI: 10.1007/s00269- 013-0621-5.CrossRefGoogle Scholar
Wells, A.F. (1949) The crystal structure of atacamite and the crystal chemistry of cupric compounds. Acta Crystallographica, 2, 175180.CrossRefGoogle Scholar