Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T17:44:50.918Z Has data issue: false hasContentIssue false

Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada

Published online by Cambridge University Press:  05 July 2018

Yuanming Pan
Affiliation:
Department of Geology University of Western Ontario London, Ontario N6A 5B7, Canada
Michael E. Fleet
Affiliation:
Department of Geology University of Western Ontario London, Ontario N6A 5B7, Canada
Neil D. Macrae
Affiliation:
Department of Geology University of Western Ontario London, Ontario N6A 5B7, Canada

Abstract

Oriented inclusions of monazite occur in the dark core of apatite porphyroblasts in a muscovite schist from the Archaean Hemlo gold deposit, Ontario, Canada. The monazite inclusions are elongated along the b-axis and parallel to the c-axis of the apatite host; the complete orientation relationship of the monazite/apatite intergrowth is bMnz//cAp, cMnz//aAp. From analysis by SIMS and EMP, the dark core of the apatite porphyroblasts is depleted in LREE (LaN/YbN = 0.56). The monazite inclusions are correspondingly enriched in LREE, but markedly depleted in HREE, compared with monazite grains in the rock matrix and cross-cutting veins. The monazite inclusions precipitated by oriented reaction through rock-fluid interactions during a late hydrothermal alteration. Their unusual REE composition is probably related to both a preferential leaching of LREE from the dark core and a selective transfer of HREE out of the apatite porphyroblasts.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åmli, R. (1975) Mineralogy and rare earth geo-chemistry of apatite and xenotime from the Gloser-heia granite pegmatite, Froland, southern Norway. Am. Mineral., 60, 607–20.Google Scholar
Bernal, J. D. and Mackay, A. L. (1965) Topotaxy. Tschermaks Min. Pert. Mitt., 10, 331–40.Google Scholar
Boudreau, A. E. and McCallum, I. S. (1990) Low-temperature alteration of REE-rich chlorapatite from the Stillwater Complex, Montana. Am. Mineral., 75, 687–93.Google Scholar
Brunfelt, A. O. and Roelandts, I. (1974) Determination of rare earths and thorium in apatites by thermal and epithermal neutron-activation analysis. Talanta, 21, 513–21.Google Scholar
Burnotte, E., Picard, E., and Michel, G. (1989) Genesis of gray monazites: evidence from the Palaeozoic of Belgium. Econ. Geol., 84, 1417–29.Google Scholar
Corfu, F. and Muir, T. L. (1989) The Hemlo-Heron Bay greenstone belt and the Hemlo Au-Mo deposit, Superior Province, Ontario, Canada. 2. Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U-Pb geochrono-logy. Chem. Geol., 79, 201–23.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1962) Non-silicates, Rock forming minerals, 5, Non-sili-cates. Longman, London.Google Scholar
Donnay, G. and Donnay, J. D. H. (1953) The crystallography of bastnaesite, parisite, roentgenite and synchisite. Am. Mineral., 38, 932–63.Google Scholar
Felsche, J. (1976) Yttrium and lanthanides. In Handbook of geochemistry (Wedepohl, K. H. ed.), II, section 39, A1-42.Google Scholar
Fleet, M. E. (1982) Orientation of phase and domain boundaries in crystalline solids. Am. Mineral., 67, 926–36.Google Scholar
Fleet, M. E. and Arima, M. (1985) Oriented hematite inclusions in sillimanite. Ibid., 70, 1232-7.Google Scholar
Fleet, M. E. Bilcox, G. A., and Barnett, R. L. (1980) Oriented magnetite inclusions in pyroxenes from the Grenville province. Can. Mineral., 18, 8999.Google Scholar
Fleet, M. E. Angeli, N., and Pan, Y. (1993) Oriented chlorite lamellae in chromite from the Pedra Branca mafic-ultramafic complex, Cearé Brazil. Am. Mineral., 78, 6874.Google Scholar
Fleischer, M. and Altschuler, Z. S. (1986) The lanthanides and yttrium in minerals of the apatite group-An analysis of the available data. Neues Jahrb. Mineral., Mh., 467-80.Google Scholar
Goad, R. E. (1987) Thegeology, primary and secondary chemical dispersion of the Hemlo Au district metal occurrences, northwestern Ontario. Unpubl. M.Sc. thesis, University of Western Ontario.Google Scholar
Harris, D. C. (1989) The mineralogy and geochemistry of the Hemlo gold deposit. Geol. Surv. Can., Econ. Geol. Rep., 38, 88 pp.Google Scholar
Hughes, J. M., Cameron, M. and Mariano, A. N. (1991) Rare-earth-element ordering and structural variations in natural rare-earth-element-bearing apatites. Am. Mineral., 76, 1165–73.Google Scholar
Lottermoser, B. G. (1988) Supergene, secondary monazite from the Mt. Weld carbonatite laterite, Western Australia. Neues Jahrb. Mineral., Mh., 67-70.Google Scholar
MacRae, N. D. (1987) Quantitative analysis of REEs by SIMS. Am. Mineral., 72, 1263–8.Google Scholar
MacRae, N. D. Bottazzi, P., Ottolini, L., and Vannucci, R. (1993) Quantitative REE analysis of silicates by SIMS: conventional energy filtering vs specimen isolation mode. Chem. Geol., (103, 45-54).Google Scholar
Mariano, A. N. (1989) Economic geology of rare earth minerals. In Geochemistry and mineralogy of rare earth elements (B. R. Lipin and G. A. McKay, eds.), Rev. Mineral., 21, 308-37.Google Scholar
Masliwec, A., McMaster, D. and York, D. (1986) The dating of Ontario's gold deposits. Ontario Geol. Surv., Misc. Pap., 130, 107–14.Google Scholar
Murata, K. J., Rose, H. J. Jr., Carron, M. K., and Glass, J. J. (1957) Systematic variation of rare earth elements in cerium-earth minerals. Geochim. Cosmo-chim. Acta, 11, 141–61.Google Scholar
Pan, Y. and Fleet, M. E. (1990) Halogen-bearing allanite from the White River gold occurrence, Hemlo area, Ontario. Can. Mineral., 28, 6775.Google Scholar
Pan, Y. and Fleet, M. E. (1991a) Metamorphic petrology and alteration assemblages of the Hemlo gold district. Ontario Geol. Surv., Misc. Pap., 156, 176–98.Google Scholar
Pan, Y. and Fleet, M. E. (1991b) Vanadian allanite-(La) and vanadian allanite-(Ce) from the Hemlo gold deposit, Ontario, Canada. Mineral. Mag., 55, 497507.Google Scholar
Pan, Y. and Fleet, M. E. (1991c) Barian feldspar and barian-chromian muscovite from the Hemlo area, Ontario. Can. Mineral., 29, 481–96.Google Scholar
Pan, Y. and Fleet, M. E. (1992) Calc-silicate alteration in the Hemlo gold deposit, Ontario: mineral assemblages, P-T-X constraints and significance. Econ. Geol., 87, 1104–21.Google Scholar
Pan, Y. and Fleet, M. E. and MacRae, N. D. (1993) Late alteration in titanite (CaTiSiOs): redistribution and remobiliza-tion of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal. Geochim. Cosmochim. Acta, 57, 355–67.Google Scholar
Pigorini, B. and Veniale, F. (1968) L'apatite accessoria nella diverse facies lithologiche delle formazioni granitoidi della Val Sersera (Vercelli). Rendiconti Soc. ltal. Mineral. Petrol., 24, 32 pp.Google Scholar
Robinson, P., Ros, M., Nord, G. C. Jr., Smyth, J. R. and Jaffe, H. W. (1977) Exsolution lamellae in augite and pigeonite: fossil indicators of lattice parameters at high-temperature and pressure. Am. Mineral., 62, 857–73.Google Scholar
Roeder, P. L., MacArthur, D., Ma, X.-P., Palmer, G. R., and Mariano, A. N. (1987) Cathodfolumines-cence and microlprobe study of rare-earth elements in apatite. Ibid., 72, 801-11.Google Scholar
Roelandts, I. (1988) Comparison of inductively coupled plasma and neutron activation analysis for precise and accurate determination of nine rare-earth elements in geological materials. Chem. Geol., 67, 171–80.Google Scholar
Ronsbo, J. G. (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. Am. Mineral., 74, 896901.Google Scholar
Semenov, E. I. (1958) Relationship between compo-sition of rare earths and structure of minerals. Geochimiya, 5, 574–86.Google Scholar
Shau, Y.-H., Yang, H.-Y. and Peacor, D. R. (1991) On oriented titanite and rutile inclusions in sagenitic biotite. Am. Mineral., 76, 1205–17.Google Scholar
Taborszky, F. K. (1962) Geochimie des apatits in Tiefengesteinen am Beispiel des Odenwaldes. Beitr. Mineral. Petrogr., 8, 354–92.Google Scholar
Van Landuyt, J. and Amelinckx, S. (1975) Multiple beam direct lattice imaging of new mixed-layer compounds of the bastnäsite-synchisite series. Am. Mineral., 60, 351–8.Google Scholar
Watson, E. B., Harrison, T. M., and Ryerson, E. J. (1985) Diffusion of Sm, Sr, and Pb in fluorapatite. Geochim. Cosmochim. Acta, 49, 1813-23.Google Scholar
Wood, S. A. (1990) The aqueous geochemistry of the rare earth elements and yttrium. Part 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapour pressure. Chem. Geol., 88, 99125.Google Scholar