Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-02T21:19:39.053Z Has data issue: false hasContentIssue false

Optical properties and crystal structure of triclinic growth sectors in vesuvianite

Published online by Cambridge University Press:  05 July 2018

T. Tanaka*
Affiliation:
Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
M. Akizuki
Affiliation:
Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
Y. Kudoh
Affiliation:
Institute of Mineralogy, Petrology and Economic Geology, Faculty of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
*

Abstract

Sectored vesuvianite showing optically triclinic properties was studied by X-ray and P-FTIR analyses, and the origins of the internal optical texture are discussed. A monoclinic refinement (space group P2/n) suggests that site occupancies are slightly different among the Al(2) series, though the OH dipole is randomly oriented in all sectors. A relationship between the surface and internal texture suggests that these sectoral structures were produced during crystal growth, not by phase transitions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akizuki, M. (1981) Origin of optical variation in analcime. American Mineralogist, 66, 403–9.Google Scholar
Akizuki, M. (1984) Origin of optical variation in grossular-andradite garnet. American Mineralogist, 69, 328–38.Google Scholar
Akizuki, M. and Sunagawa, I. (1978) Study of the sector structure in adularia by means of optical microscopy, infra- red absorption, and electron microscopy. Mineralogical Magazine, 42, 453–62.CrossRefGoogle Scholar
Akizuki, M. and Terada, T. (1998) Origin of abnormal property of apophyllite. Neues Jahrbuch für Mineralogie, Monatshefte, 234–40.Google Scholar
Akizuki, M., Hampar, M. and Zussman, J. (1979) An explanation of anomalous optical properties of topaz. Mineralogical Magazine, 43, 237–41.CrossRefGoogle Scholar
Allen, F. and Burnham, C. (1992) A comprehensive structure-model for vesuvianite: symmetry variation and crystal growth. The Canadian Mineralogist, 30, 118.Google Scholar
Armbruster, T. and Gnos, E. (2000) P4/n and P4nc long-range ordering in low-temperature vesuvianites. American Mineralogist, 85, 563–9.CrossRefGoogle Scholar
Brauns, R. (1883) Ueber die Ursache der anomalen Doppelbrechung einiger regulär krystallisirender Salze. Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 102–11.Google Scholar
Brauns, R. (1891) Die Optischen Anomalien der Krystalle. S. Hirzel, Leipzig, Germany.Google Scholar
Fitzgerald, S., Rheingold, A. and Leavens, P. (1986) Crystal stucture of a non-P4/nnc vesuvianite from Asbestos, Quebec. American Mineralogist, 71, 1483–8.Google Scholar
Fitzgerald, S., Leavens, P., Rheingold, A. and Nelen, J. (1987) Crystal structure of a REE-bearing vesuvianite from San Benito County, California. American Mineralogist, 72, 625–8Google Scholar
Groat, L., Hawthorne, F. and Ercit, T. (1992) The chemistry of vesuvianite. The Canad ian Mineralogist, 30, 1948.Google Scholar
Groat, L., Hawthorne, F., Ercit, T. and Putnis, A. (1993) The symmetry of vesuvianite. The Canadian Mineralogist, 31, 617–35.Google Scholar
Groat, L., Hawthorne, F., Rossman, G. and Ercit, T. (1995) The infrared spectroscopy of vesuvianite in the OH region. The Canadian Mineralogist, 33, 609–26.Google Scholar
International Tables for X-ray Crystallography (1974) The Kynoch Press, Birmingham, England.Google Scholar
Johnson, T.E., Hudson, N.F.C. and Droop, G.T.R. (2000) Wollastonite-bearing assemblages from the Dalradian at Fraserburgh, northeast Scotland and their bearing on the emplacement of garnetiferous granitoid sheets. Mineralogical Magazine, 64, 11651176.CrossRefGoogle Scholar
Lager, G., Xie, Q., Ross, F., Rossman, G., Armbruster, T., Rotella, F. and Schultz, A. (1999) Hydrogenatom positions in P4/nnc vesuvianite. The Canadian Mineralogist, 37, 763–8.Google Scholar
Mallard, E. (1877) Ueber anomale optische Erscheinungen an Krystallen. Zeitschrift für Kristallographie und Mineralogie, 309–20.Google Scholar
Matsubara, S., Miyawaki, R., Kato, A., Yokoyama, K. and Okamoto, A. (1998) Okayamalite, Ca2B2SiO7, a new mineral, boron analogue of gehlenite. Mineralogical Magazine, 62, 703706CrossRefGoogle Scholar
Molecular Structure Corporation (1985, 1992) teXsan: Crystal structure analysis package. Molecular Structure Corporation, Texas, USA.Google Scholar
Ohkawa, M., Yoshiasa, A. and Takeno, S. (1994) Structural investigation of high- and low-symmetry vesuvianite. Mineralogical Journal, 17, 120.CrossRefGoogle Scholar
Shtukenberg, A.G., Punin, Yu.O. and Soloviev, V.N. (2000) Effect of growth conditions on the birefringence of mixed crystals revealed in alum solid solutions. Mineralogical Magazine, 64, 837–45.CrossRefGoogle Scholar
Shtukenberg, A.G., Punin, Yu.O., Frank-Kamenetskaya, O.V., Kovalev, O.G. and Sokolov, P.B. (2001) On the origin of anomalous birefringence in grandite garnets. Mineralogical Magazine, 65, 445–59.CrossRefGoogle Scholar
Veblen, D. and Wiechmann, M. (1991) Domain structure of low-symmetry vesuvian ite from Crestmore, California. American Mineralogist, 76, 397404.Google Scholar
Warren, B. and Modell, D. (1931) The structure of vesuvianite Ca10Al4(Mg, Fe)2Si9O34(OH)4 . Zeitschrift für Kristallographie, 78, 422–32.Google Scholar