Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T14:51:28.615Z Has data issue: false hasContentIssue false

On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation

Published online by Cambridge University Press:  05 July 2018

Gerhard Tischendorf
Affiliation:
Neumannstr. 106, 13189 Berlin, Germany
Bärbel Gottesmann
Affiliation:
GeoForsehungsZentrum Potsdam, Dept. 4.2, Telegrafenberg A50, 14473 Potsdam, Germany
Hans-Jürgen Förster
Affiliation:
GeoForsehungsZentrum Potsdam, Dept. 4.2, Telegrafenberg A50, 14473 Potsdam, Germany
Robert B. Trumbull
Affiliation:
GeoForsehungsZentrum Potsdam, Dept. 4.2, Telegrafenberg A50, 14473 Potsdam, Germany

Abstract

Lithium may constitute an essential element in micas, yet it cannot be detected by the electron microprobe. Since Li is critical for correctly classifying micas and properly calculating their formulae, several methods have been proposed to overcome this analytical deficiency. We offer empirical relationships between Li2O and SiO2, MgO, F, and Rb in trioctahedral micas, and between Li2O and F as well as Rb in dioctahedral micas. The resultant regression equations enable lithium contents to be sufficiently well estimated from EPM analyses within the range of validity discussed.

Secondly, we introduce an easy to handle, new diagram with the axis variables [Mg-Li] and [Fetot + Mn + Ti-AlVI] for graphical representation and discuss its scientific rationale. Being based on absolute abundances of cations in the octahedral layer, the diagram provides a simple means to classify micas in terms of composition and octahedral site occupancy, and it also allows compositional relationships between Li-bearing and Li-free mica varieties as well as between trioctahedral and dioctahedral micas to be displayed on a single, two-dimensional diagram.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Saleh, S., Fuge, R. and Rea, W.J. (1977) The geochemistry of some biotites from the Dartmoor granite. Proc. Ussher Soc., 4, 3748.Google Scholar
Bailey, S.W. (Ed.) (1984) Micas. Reviews in Mineralogy, 13, Mineralogical Society of America, Chelsea.Google Scholar
Bargar, K.E., Beeson, M.H., Fournier, R.O. and Muffler, L.J.O. (1973) Present-day deposition of lepidolite from thermal waters in Yellowstone National Park. Amer. Mineral, 58, 901-4.Google Scholar
Barrière, M. and Cotton, J. (1979) Biotite and associated minerals as markers of magmatie fractionation and deuteric equilibration in granites. Contrib. Mineral. Petrol., 70, 183-92.CrossRefGoogle Scholar
Basu, A.R., Rubury, E., Mehnert, H. and Tatsumoto, M. (1984) Sm-Nd, K-Ar and petrologic study of some kimberlites from Eastern United States and their implication for mantle evolution. Contrib. Mineral. Petrol., 86, 35-44.CrossRefGoogle Scholar
Bea, F. (1980) Geochemistry of biotites in an assimilation process. An approach to recognition of metamorphic biotites from magmatic occurrence. Krystalinikum, 15, 103-24.Google Scholar
Bea, F., Pereira, M.D. and Stroh, A. (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol., 117, 291-312.CrossRefGoogle Scholar
Bigi, S. and Brigatti, M.F. (1994) Crystal chemistry and microstructures of plutonic biotite. Amer. Mineral., 79, 63-72.Google Scholar
Boettcher, A.L. and O'Neil, J.R. (1980) Stable isotope, chemical and petrographic studies of high pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Amer. J. Sci., 280-A, 594621.Google Scholar
Bokonbaev, K.D. (1976) Pecularities of metasomatic alteration of biotite in granites of the Sukhodol'sky massif (southeast Kirgizia) (Russ.). Zap. kirg. Otd. vses. mineral Obshch., 9, 96100.Google Scholar
Borodanov, V.M. (1983) Peeularities of biotite composition in granitoids associated with tungsten mineralization (Russ.). Izvest. AN SSSR, Ser. Geol., 7, 7681.Google Scholar
Brigatti, M.F. and Davoli, P. (1990) Crystal-structure refmements of 1M plutonic biotites. Amer. Mineral, 75, 305-13.Google Scholar
Černý, P. and Burt, D.M (1984) Paragenesis, crystal-lochemical characteristics, and geochemical evolution of micas in granite pegmatites. In Reviews in Mineralogy, 13, Micas (Bailey, S. W., ed.), Mineral. Soe. Amer., 257-97.Google Scholar
Černý, P. and Trueman, D.L. (1985) Polylithionite from rare-metal deposits of the Blachford Lake alkaline complex, N. W. T., Canada. Amer. Mineral., 70, 1127-34.Google Scholar
Černý, P., Rieder, M. and Povondra, P. (1970) Three polytypes of lepidolite from Czechoslovakia. Lithos, 3, 319-25.CrossRefGoogle Scholar
Černý, P., Stanek, J., Novátk, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kavalová, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rozná and Dobrá Voda pegmatites, Czech Republic. Mineral. Petrol., 55, 177201.CrossRefGoogle Scholar
Charoy, B. and Noronha, F. (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). J. Petrol., 37, 7394.CrossRefGoogle Scholar
Charoy, B., Chaussidon, M. and Noronha, F. (1995) Lithium zonation in white micas from the Argemela microgranite (central Portugal): an in-situ ion-, electron-microprobe and spectroscopic investigation. Eur. J. Mineral., 7, 335-52.CrossRefGoogle Scholar
Chaudhry, M.N. and Howie, R.A. (1973) Lithium-aluminium micas from the Meldon aplite, Devonshire, England. Mineral. Mag., 39, 289-96.CrossRefGoogle Scholar
Cooper, A.F., Paterson, L.A. and Reid, D.L. (1995) Lithium in carbonatites - consequence of an enriched mantle source. Mineral. Mag., 59, 401-8.CrossRefGoogle Scholar
De Fino, M., La Volpe, L. and Piccarreta, G. (1983) Marie minerals from Punta delle Pierre Nere subvolcanites (Gargano, Southern Italy): Their petrological significance. Tscherm. Mineral. Petrogr. Mitt., 32, 6978.CrossRefGoogle Scholar
De Kimpe, C.R., Miles, N., Kodama, H. and Dejou, J. (1987) Alteration of phlogopite to corrensite at Sharbot Lake, Ontario. Clays Clay Mineral., 35, 150-58.CrossRefGoogle Scholar
du Bray, E.A. (1994) Compositions of micas in peraluminous granitoids of the eastern Arabian Shield. Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites. Contrib. Mineral. PetroL, 116, 381-97.CrossRefGoogle Scholar
Edgar, A.D. (1992) Barium-rich phlogopite and biotite from some Quaternary alkali marie tavas, West Eifel, Germany. Eur. J. Mineral., 4, 321-30.CrossRefGoogle Scholar
Edmunds, W.M., Kay, R.L.F. and McCarl∼ey, R.A. (1985) Origin of saline groundwaters in the CarnmeneUis Granite (Cornwall, England): Natural processes and reaction during Hot Dry Rock reservoir circulation. Chem. Geol, 49, 287-301.CrossRefGoogle Scholar
Fiala, J., Vejnar, Z. and Kucerová, D. (1976): Composition of the biotites and the coexisting biotite-hornblende pairs in granitic rocks of the Central Bohemian Pluton. Krystalinikum, 12, 79111.Google Scholar
Fonteilles, M. (1987) La composition chimique des micas lithinifères (et autres minéraux) des granites d'Échassières comme image de leur évolution magmatique. Géologie de la France,2-3, 149-78.Google Scholar
Förster, H.-J. and Tisehendorf, G. (1996) Compositional heterogeneity of silicie magmatic rocks from the German Variscides. Z. Geol. Wiss., 24, 467-82.Google Scholar
Foster, M.D. (1960a) Interpretation of the composition of trioctahedral micas. U.S. Geol. Survey Prof. Paper, 354-B, 1149.Google Scholar
Foster, M.D. (1960b) Interpretation of the composition of lithium micas. U.S. Geol. Survey Prof. Paper, 354-E, 115-47.Google Scholar
Ganzeeva, L.V. (1973) Taeniolite of alkali metasomatic rocks from Byelorussia (Russ.). Dokl. Ak. Nauk Byeloruss. SSR., T XVII, 560-62.Google Scholar
Goeman, U.E.H. (1972) Untersuchung und Berechnung einiger Biotite aus Graniten des nordwestlichen Fichtelgebirges/NE-Bayern. Schweiz. Min. Petr. Mitt., 52, 317-29.Google Scholar
Gottesmann, B. and Tischendorf, G. (1978) Klassirikation, Chemismus und Optik trioktae-drischer Glimmer. Z. Geol. Wiss., 6, 681708.Google Scholar
Gottesmann, B. and Tischendorf, G. (1980) Über Protolithionit. Z. Geol. Wiss., 8, 1365-73.Google Scholar
Gottesmann, B., Tischendorf, G. and Förster, H.-J. (1994a) Trioctahedral micas as indicators of the compositional evolution of Sn-Li-Rb-Cs-F granites, an example: The Eibenstock pluton (Western Erzgebirge/Germany). 16th General IMA Meeting, Pisa, 4.-9. Sept. 1994, Abstracts, p. 152.Google Scholar
Gottesmann, B., Tischendorf, G., Wand, U., Bielicki, K.-H., Förster, H.-J., Haase, G. and Thomas, R. (1994b) Die granitoiden Gesteine des Siichsischen Granulitmassivs - Petrographie, Geochemie und Altersstellung. Hallesches .Jb. Geowiss., 16, 2355.Google Scholar
Grew, E.S., Chernosky, J.V., Werding, G., Abraham, K., Marquez, N. and Hinthorne, J.R. (1990) Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-ray study empha-sizing Li, Be, B and F contents. J. Petrol. 31, 1025-70.CrossRefGoogle Scholar
Grew, E.S., Hiroi, Y., Motoyoshi, Y., Kondo, Y., Jayatileke, S.J.M. and Marquez, N. (1995) Iron-rich komerupine in sheared pegmatite from the Wanni Complex, at Homagama, Sri Lanka. Eur. J. Mineral., 7, 623-36.CrossRefGoogle Scholar
Harlow, G.E. (1995) Crystal chemistry of barian enrichment in micas from metasomatized inclusions in serpentinite, Motagua Fault Zone, Guatemala. Eur. J. Mineral., 7, 775-89.CrossRefGoogle Scholar
Hecht, L. (1993) Die Glimmer als Indikatoren ftir die magmatische und postmagmatisehe Entwicklung der Granite des Fichtelgebirges (NE-Bayem). Münchner Geol. Hefte, 10, 1221.Google Scholar
Heinrich, E.Wm. (1967) Micas of the Brown Derby pegmatites, Gunnison County, Colorado. Amer. Mineral., 52, 1110-21. 1578.Google Scholar
Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-mieas from S.W.England and France: an ion- and electron-microprobe study. Mineral. Mag., 53, 427—49.CrossRefGoogle Scholar
Icenhower, J. and London, D. (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa (H2O). Contrib. Mineral. Petrol., 127, 17-29.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987) Fractionation trends in mica and tourmaline as indicator of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim. Cosmochim. Acta, 51, 519—34.CrossRefGoogle Scholar
Kramer, W. and Seifert, W. (1994) Mica-lamprophyres and related volcanics of the Erzgebirge and their metallogenic signirieanee. In Metallogeny of Collisional Orogens (Seltmann, R., Kämpf, H. and Möller, P., eds.) Czech Geol. Surv., Prague, 159-65.Google Scholar
Lapides, I.L., Kovalenko, V.I. and Koval', P.V. (1977) The Micas of Rare-Metal Granitoids (Russ.). Ed. Nauka, Sibirskoje Otd., Novosibirsk, 103 pp.Google Scholar
Livi, K.J.T. and Veblen, D.R. (1987) ‘Eastonite’ from Easton, Pennsylvania: A mixture of phlogopite and a new form of serpentine. Amer. Mineral., 72, 113-25.Google Scholar
Luecke, W. (1981) Lithium pegmatites in the Leinster granite (southeast Ireland). Chem. Geol., 34, 195233.CrossRefGoogle Scholar
Malyshonok, Yu V. (1989) Pecularities of the chemical composition of micas from the Murun Massif (Russ.). Miner. Zhurn., 11/6, 3852.Google Scholar
, D., Ravier, J. and Phan, K.D. (1962) Nature et composition chimique des micas de deux lampro-phyres. Bull, Soc. franc. Miné;r. Crist., 85, 321-28.Google Scholar
Mokhtari, A., Wagner, C. and Velde, D. (1985) Presence of late crystallizing ferriannite-rich annite in basic eruptive rocks from Morocco. N. Jb. Miner., Mh., 11, 513-20.Google Scholar
Monier, G. and Robert, J.-L. (1986a) Muscovite solid solutions in the system K2O-MgO-FeO-Al2O3-SiO2-H2O: an experimental study at 2 kbar P H2O and comparison with natural Li-free white micas. Mineral Mag., 50, 257-66.CrossRefGoogle Scholar
Monier, G. and Robert, J.-L. (1986b) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O–Li2O—MgO-FeO-Al2O3-SiO2-H20-HF at 600° 2 kbar P H2O comparison with natural lithium mieas. Mineral Mag., 50, 641-51.CrossRefGoogle Scholar
Monier, G., Charoy, B., Cuney, M., Ohnenstetter, D. and Robert, J.-L. (1987) Évolution spatiale et temporelle de la composition des micas du granite albitique è topaze-lépidolite de Beauvoir. G∼ol. France, 2-3, 179-88.Google Scholar
Müller, G. (1966) Die Beziehungen zwischen der chemischen Zusammensetzung, Liehtbrechung und Dichte einiger koexistierender Biotite, Muskowite und Chlorite aus granitischen Tiefengesteinen. Contrib. Mineral Petrol., 12, 173-91.CrossRefGoogle Scholar
Nash, W.P. (1993) Fluorine iron biotite from the Honeycomb Hill rhyolite, Utah: The halogen record of decompression in a silicic magma. Amer. Mineral., 78, 1031-40.Google Scholar
Neiva, A.M.R. (1976) The geochemistry of biotites from granites of northern Portugal with special reference to their tin content. Mineral. Mag., 40, 453-66.CrossRefGoogle Scholar
Neiva, A.M.R. (1980) Chlorite and biotite from contact metamorphism of phyllite and metagraywacke by granite, aplite-pegmatite and quartz veins. Chem. Geol, 19, 49-71.CrossRefGoogle Scholar
Neiva, A.M.R. (1981a) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, 14, 149-63.CrossRefGoogle Scholar
Neiva, A.M.R. (1981b) Geochemistry of chlorite and biotite from contact metamorphism of phyllite by granites. Mem. Noticias, PubL Lab. Mineral, Geol., Univ. Coimbra, No. 91/92, 113-34.Google Scholar
Neiva, A.M.R. (1992) Geochemistry and evolution of Jales granitic system, Northern Portugal. Chem. Erde, 52, 225-41.Google Scholar
Neiva, A.M.R. and Gomes, M.E.P. (1991) Geochemistry of the granitoid rocks and their minerals from Lixa do Alvao-Alfarela de Jales-Toureneinho (Vila Pouca de Aguiar, northern Portugal). Chem. Geol., 89, 305-27.CrossRefGoogle Scholar
Nêmec, D. (1969) Glimmer der regionalmetamorphen Skarne Westmährens. Tscherm. Miner. Petrogr. Mitt., 13, 55-89.CrossRefGoogle Scholar
Nêmec, D. (1983) Zinnwaldit in moldanubischen Lithium-Pegmatiten. Chem. Erde, 42, 197-204.Google Scholar
Ottolini, L., Bottazzi, P. and Vannucci, R. (1993) Quanitification of Lithium, Beryllium, and Boron in silicates by secondary ion mass spectrometry using conventional energy filtering. Anal Chem., 65, 1960-68.CrossRefGoogle Scholar
Pechar, F. and Rykl, D. (1992) Die Vergleichung der kristallchemischen Parameter der Fe-Li-Glimmer aus den Lokalitäten Cínovee, Vysoký Kámen trod des Biotits aus dem Mittelböhmischen Pluton (Czech., Germ Res.). Ústecké Muzejní Sešity, Ústi, 4, 56-70.Google Scholar
Pomarleanu, V. and Movileanu, A. (1977/78) Contributii la geoehimia biofitelor din Romania. D. S. Inst. Geol Geofiz., 1. Miner.-PetroL-Geochim., Bucuresti, LXV/1, 101-20.Google Scholar
Rieder, M. (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Er-zgebirge). Contrib. Mineral Petrol., 27, 131-58.CrossRefGoogle Scholar
Rieder, M., Povondra, P. and Frýda, J. (1995) Coexisting biotite and muscovite; an example from a Moinian mica schist at Glenfinnan, Scottish Highlands. Mineral Petrol., 53, 6374.Google Scholar
Rieder, M., Haapala, I. and Povondra, P. (1996) Mineralogy of dark mica from the Wiborg rapakivi batholith, southeastern Finland. Eur. J. Mineral., 8, 593-605.CrossRefGoogle Scholar
Rub, M.G., Rub, A.K. and Loseva, T.I. (1971) Micas as guides for ore presence detection in granitoids (Russ.). /zv. Ak. Nauk SSSR, Ser. Geol., 10, 73-85.Google Scholar
Rub, M.G., Pavlov, V.A., Rub, A.K., Stemprok, M., Drabek, M. and Drabkova, E. (1983) Vertical zonality of elements in Li-F granites of the Cinovec massif (CSSR) (Russ.) In Korrelyaziya magmaticheskikh porod Chekhoslovakii i nekotorikh rayonov SSSR (Bogatikov, O. A. and Borsuk, A. M., eds.) Ed. Nauka Moskva, 108-37.Google Scholar
Rub, M.G., Rub, A.K. and Akimov, V.M. (1986) Rare-metal bearing granites of Central Sikhote-Alin’ (Russ.). Izv. Ak. Nauk SSSR, Ser. Geol., 7, 33-46.Google Scholar
Schmidt, W. and Pietzsch, C. (1990) Iron distribution and geochemistry of pegmatitic dioctahedral 2M1 micas. Chem. Erde, 50, 27-38.Google Scholar
Silva, M.M.V.G. and Neiva, A.M.R. (1990) Geochemistry of the granites and their minerals from Paredes da Beira-Penedono, northern Portugal. Chem. Geol., 85, 147-70.CrossRefGoogle Scholar
Skosyreva, M.V. and Vlasova, E.V. (1983) First occurrence of polylithionite from rare-metal granite pegmatites (Russ.). DokL Ak. Nauk SSSR, 272/3, 694-97.Google Scholar
Stone, M., Exley, C.S. and George, M.C. (1988) Compositions of trioctahedral micas in the Comubian batholith. Mineral Mag., 52, 175-92.CrossRefGoogle Scholar
Shihua, Sun (1984): The subdivision of lithium micas and their significance in the study of granitoids. In Geology of Granites and their Metallogenetic Relations (Xu Keqin, Tu Guangchi, eds.), Proc. of the Int. Symp., Nanjing, China, Oct. 26-30, 1982, 379-93.Google Scholar
Tindle, A.G. and Webb, P.C. (1990) Estimation of lithium contents in trioctahedral micas using microp-robe data: application to micas from granitic rocks. Eur. J. Mineral., 2, 595-610.CrossRefGoogle Scholar
Tischendorf, G., Friese, G. and Schindler, R. (1969) Die Dunkelglimmer der westerzgebirgiseh-vogtlän-dischen Granite und ihre Bedeutung als petrogen-etische und metallogenetisehe Indikatoren. Geologie, 18, 384-99. 1024-44.Google Scholar
Tischendorf, G., Päilchen, W., Röllig, G. and Lange, H. (1987) Formationelle Gliederung, petrographisch-geochemische Charakteristik und Genese der Granitoide der Deutschen Demokratischen Republik. Chem. Erde, 46, 7-23.Google Scholar
Tröger, W.E. (1962) Über Protholithionit und Zinnwaldit - Ein Beitrag zur Kenntnis von Chemismus und Optik der Lithiumglimmer. Beitr. Mineral. Petrol., 8, 418-31.CrossRefGoogle Scholar
Uhlig, J. (1992) Zur Mineralogie und Geochemie der Granitoid- und Greisenglimmer aus Zinnlagerstätten des Sächsischen Erzgebirges und der Mongolei. Thesis, Bergakademie Freiberg, 129 p.Google Scholar
Volkov, V.N. and Gorbacheva, S.A. (1980) Variations of crystallization environment of granites in a vertical section of an intrusive body according to data on the composition of rock-forming biotite (Russ.). Geokhimiya, 147-53.Google Scholar
Wagner, C., Velde, D. and Mokhtari, A. (1987) Sector-zoned phlogopites in igneous rocks. Contrib. Mineral. Petrol., 96, 186-91.CrossRefGoogle Scholar
Winchell, A.N. (1942) Further studies of the lepidolite system. Amer. Mineral., 27, 114—30.Google Scholar