Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T05:35:55.612Z Has data issue: false hasContentIssue false

Niobian K–Ba–V titanates from micaceous kimberlite, Star mine, Orange Free State, South Africa

Published online by Cambridge University Press:  05 July 2018

Roger H. Mitchell
Affiliation:
Department of Geology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
Henry O. A. Meyer
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907, U.S.A.

Abstract

Compositional data are presented for Nb-Ba-K-V titanates from micaceous kimberlite (Star mine, S. Africa). These data significantly extend the previously known range of solid solutions in naturally occurring members of the hollandite group. Two distinct suites of crystals occur. One is a suite of primary groundmass prismatic crystals that are Ba-K-V-rich and represent solid-solutions from the priderite series towards mannardite. The second suite consists of anhedral xenocrysts that are Ba-free. In this suite relatively Nb-rich varieties (>4.0% Nb2O5) represent solid-solution towards a niobian-bearing potassian analogue of mannardite, whereas relative Nb-poor (<3.0% Nb2O5) varieties are Nb-bearing vanadian priderites. These hollandite-group minerals have compositions that differ significantly from priderites found in lamproites.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dong, Z., Zhou, J., Lu, Q. and Peng, Z. (1983) Yimengite, K(Cr, Ti, Fe, Mg)12O19 , a new mineral from China. Kexue Tongbao 15, 932-6 (in Chinese).Google Scholar
Dubeau, M. L. and Edgar, A. E. (1985) Priderite stability in the system K2MgTi7O16-BaMgTi7O16 . Mineral. Mag. 49, 603-6.CrossRefGoogle Scholar
Gatehouse, B. M., Jones, G. C., Pring, A. and Symes, R. F. (1986) The chemistry and structure of redledgeite. Ibid. 50, 709-15.CrossRefGoogle Scholar
Grey, I. E., Madsen, I. C. and Haggerty, S. E. (1987) Structure of a new upper mantle, magnetoplumbitetype phase, Ba(Ti3Cr4Fe4Mg)O19 . Am. Mineral. 72, 633-6.Google Scholar
Haggerty, S. E. (1983) The mineral chemistry of new titanates from the Jagersfontein kimberlite, South Africa: Implications for metasomatism in the upper mantle. Geochim. Cosmochim. Acta 47, 1833-54.CrossRefGoogle Scholar
Haggerty, S. E., Smyth, J. R., Erlank, A. J., Rickard, R. S. and Danchin, R. V. (1983) Lindsleyite (Ba) and mathiasite (Ba): two new chronium titanates in the crichtonite series from the upper mantle. Am. Mineral. 68, 494-505.Google Scholar
Haggerty, S. E., Grey, I. E., Madsen, I. C., Criddle, A. J., Stanley, C. J. and Erlank, A. J. (1989) Hawthorneite, Ba(Ti3Cr4Fe4Mg)O19: a new metasomatic magnetoplumbite-type mineral from the upper mantle. Ibid. (in press).Google Scholar
Jaques, A. O., Haggerty, S. E., Boxer, G. and Lucas, H. (1989) Mineralogy and petrology of the Argyle lamproite pipe, Western Australia. Spec. Publ. Geol. Soc. Australia, in press.Google Scholar
Kesson, S. E. and White, T. J. (1986) [BaxCsy] [(Ti, Al)2x+y 3+Ti8-2x-y 4+] synroc-type hollandites: 1. Phas. chemistry. Proc. Roy. Soc. London 405A, 73101.Google Scholar
McMillan, D. J., Baughman, G. D. and Schamber (1985) Experience with multiple least squares fitting with derivatives. In Microbeam Analysis (Armstrong, J. T., ed.). San Francisco Press, 137-40.Google Scholar
Mitchell, R. H. (1985) A review of the mineralogy of lamproites. Trans. Geol. Soc. South Africa 88, 411-37.Google Scholar
Mitchell, R. H. and Haggerty, S. E. (1986) A new K-V-Ba titanate related to priderite from the New Elands kimbedite, South Africa. Neues Jahrb. Mineral. Mh. 376-84.Google Scholar
Mitchell, R. H. and Meyer, H. O. A. (1989) Mineralogy of micaceous kimberlites from the New Elands and Star Mines, Orange Free State, South Africa. Spec. Publ. Geol. Soc. , Australia, in press.Google Scholar
Myhra, S., White, T. J., Kesson, S. E. and Riviere, J. C. (1988) X-ray photoelectron spectroscopy for the direct identification of Ti valence in [BaxCsy] [(Ti, Al)2x+y 3+Ti8-2x-y 4+]O16 hollandites. Am. Mineral. 73, 161-7.Google Scholar
Nickel, E. H. and Mandarino, J. A. (1987) Procedures involving the IMA Commission of New Minerals and Mineral Names and guidelines on mineral nomenclature. Can. Mineral. 25, 353-77.Google Scholar
Norrish, L. (1951) Priderite, a new mineral from the leucite lamproites of the West Kimberley, Western Australia. Mineral. Mag. 29, 496-501.Google Scholar
Scott, J. D. and Peatfield, G. R. (1986) [Ba, H2O]-Ti6V3+O16, a new mineral species and new data on redledgeite. Can. Mineral. 24, 55-66.Google Scholar
Skinner, E. M. W. and Clement, C. R. (1979) A mineralogical classification of southern African kimberlites. I. Kimberlites, Diatremes and Diamonds: Their Geology, Petrology and Geochemistry, Proc. 2nd lnternat. Kimberlite Conf. 1 (Boyd, F. R. and Meyer, H. O. A., eds.). Amer. Geophys. Union, 129-39.Google Scholar
Zhuravleva, L. N., Yukina, N. V. and Ryabeva, Y. G. (1978) Priderite, first find in the U.S.S.R. DokL Akad. Nauk SSSR 239, 141-3.Google Scholar