Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T19:22:50.775Z Has data issue: false hasContentIssue false

Natromarkeyite and pseudomarkeyite, two new calcium uranyl carbonate minerals from the Markey mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  27 July 2020

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA90007, USA
Travis A. Olds
Affiliation:
Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania15213, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Peter C. Burns
Affiliation:
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN46556, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT84108, USA
*
*Author for correspondence: Anthony R. Kampf, Email: [email protected]

Abstract

The new minerals natromarkeyite, Na2Ca8(UO2)4(CO3)13(H2O)24⋅3H2O (IMA2018-152) and pseudomarkeyite, Ca8(UO2)4(CO3)12(H2O)18⋅3H2O (IMA2018-114) were found in the Markey mine, San Juan County, Utah, USA, where they occur as secondary phases on asphaltum. Natromarkeyite properties are: untwinned blades and tablets to 0.2 mm, pale yellow green colour; transparent; white streak; bright bluish white fluorescence (405 nm laser); vitreous to pearly lustre; brittle; Mohs hardness 1½ to 2; irregular fracture; three cleavages ({001} perfect, {100} and {010} good); density = 2.70(2) g cm–3; biaxial (–) with α = 1.528(2), β = 1.532(2) and γ = 1.533(2); and pleochroism is X = pale green yellow, YZ = light green yellow. Pseudomarkeyite properties are: twinned tapering blades and tablets to 1 mm; pale green yellow colour; transparent; white streak; bright bluish white fluorescence (405 nm laser); vitreous to pearly lustre; brittle; Mohs hardness ≈ 1; stepped fracture; three cleavages ({10$\bar{1}$} very easy, {010} good, {100} fair); density = 2.88(2) g cm–3; biaxial (–) with α = 1.549(2), β = 1.553(2) and γ = 1.557(2); and it is nonpleochroic. The Raman spectra of markeyite, natromarkeyite and pseudomarkeyite are very similar and exhibit bands consistent with UO22+, CO32– and O–H. Electron microprobe analyses provided the empirical formula Na2.01Ca7.97Mg0.03Cu2+0.05(UO2)4(CO3)13(H2O)24⋅3H2O (–0.11 H) for natromarkeyite and Ca7.95(UO2)4(CO3)12(H2O)18⋅3H2O (+0.10 H) for pseudomarkeyite. Natromarkeyite is orthorhombic, Pmmn, a = 17.8820(13), b = 18.3030(4), c = 10.2249(3) Å, V = 3336.6(3) Å3 and Z = 2. Pseudomarkeyite is monoclinic, P21/m, a = 17.531(3), b = 18.555(3), c = 9.130(3) Å, β = 103.95(3)°, V = 2882.3(13) Å3 and Z = 2. The structures of natromarkeyite (R1 = 0.0202 for 2898 I > 2σI) and pseudomarkeyite (R1 = 0.0787 for 2106 I > 2σI) contain uranyl tricarbonate clusters that are linked by (Ca/Na)–O polyhedra forming thick corrugated heteropolyhedral layers. Natromarkeyite is isostructural with markeyite; pseudomarkeyite has a very similar structure.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ferdinando Bosi

References

Anderson, A., Chieh, Ch., Irish, D.E. and Tong, J.P.K. (1980) An X-ray crystallographic, Raman, and infrared spectral study of crystalline potassium uranyl carbonate, K4UO2(CO3)3. Canadian Journal of Chemistry, 58, 16511658.CrossRefGoogle Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium–oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Blatov, V.A, Shevchenko, A.P. and Proserpio, D.M. (2014) Applied topological analysis of crystal structures with the program package ToposPro. Crystal Growth and Design, 14, 35763586.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.Google Scholar
Čejka, J. (1999) Infrared and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. and Finch, R., editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Čejka, J. (2005) Vibrational spectroscopy of the uranyl minerals – infrared and Raman spectra of the uranyl minerals. II. Uranyl carbonates. Bulletin mineralogicko–petrologického oddělení Národního muzea (Praha), 13, 6272 [in Czech].Google Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Finch, R.J., Cooper, M.A., Hawthorne, F.C. and Ewing, R.C. (1999) Refinement of the crystal structure of rutherfordine. The Canadian Mineralogist, 37, 929938.Google Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Hughes, K.-A. and Burns, P.C. (2003) A new uranyl carbonate sheet in the crystal structure of fontanite, Ca[(UO2)3(CO3)2O2](H2O)6. American Mineralogist, 88, 962966.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2017) Klaprothite, péligotite and ottohahnite, three new sodium uranyl sulfate minerals with bidentate UO7–SO4 linkages from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 81, 753779.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2018) Markeyite, a new calcium uranyl tricarbonate mineral from the Markey mine, San Juan County, Utah, USA. Mineralogical Magazine, 82, 10891100.CrossRefGoogle Scholar
Kampf, A.R., Olds, T.A., Plášil, J., Burns, P.C. and Marty, J. (2019a) Pseudomarkeyite, IMA 2018-114. CNMNC Newsletter No. 47, February 2019, page 144 ; Mineralogical Magazine, 83, 143147.Google Scholar
Kampf, A.R., Olds, T.A., Plášil, J., Marty, J. and Burns, P.C. (2019b) Natromarkeyite, IMA 2018-152. CNMNC Newsletter No. 48, April 2019, page 316; Mineralogical Magazine, 83, 315317.Google Scholar
Kampf, A.R., Olds, T.A., Plášil, J., Marty, J. and Perry, S.N. (2019c) Feynmanite, a new sodium–uranyl–sulfate mineral from Red Canyon, San Juan County, Utah, USA. Mineralogical Magazine, 83, 153160.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Nash, B.P. and Marty, J. (2019d) Magnesioleydetite and straßmannite, two new uranyl sulfate minerals with sheet structures from Red Canyon, Utah. Mineralogical Magazine, 83, 349360.Google Scholar
Kampf, A.R., Plášil, J., Olds, T.A., Nash, B.P., Marty, J. and Belkin, H.E. (2019e) Meyrowitzite, Ca(UO2)(CO3)2⋅5H2O, a new mineral with a novel uranyl–carbonate sheet. American Mineralogist, 103, 603610.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Nash, B.P., Němec, I. and Marty, J. (2020) Uroxite and metauroxite, the first two uranyl–oxalate minerals. Mineralogical Magazine, 84, 131141.CrossRefGoogle Scholar
Koglin, E., Schenk, H.J. and Schwochau, K. (1979) Vibrational and low temperature optical spectra of the uranyl tricarbonato complex [UO2(CO3)3]4–. Spectrochimica Acta, 35A, 641647.CrossRefGoogle Scholar
Krivovichev, S.V. (2012) Topological complexity of crystal structures: quantitative approach. Acta Crystallographica, A68, 393398.CrossRefGoogle Scholar
Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275326.CrossRefGoogle Scholar
Krivovichev, S.V. (2014) Which inorganic structures are the most complex? Angewandte Chemie International Edition, 53, 654661.CrossRefGoogle ScholarPubMed
Krivovichev, S.V. (2018) Ladders of information: what contributes to the structural complexity of inorganic crystals. Zeitschrift für Kristallographie, 233, 155161.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Lussier, A.J., Lopez, R.A. and Burns, P.C. (2016) A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. The Canadian Mineralogist, 54, 177283.Google Scholar
Mandarino, J.A. (1976) The Gladstone–Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Mereiter, K. (1982) The crystal structure of liebigite, Ca2UO2(CO3)3·~11H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 277288.CrossRefGoogle Scholar
Olds, T., Sadergaski, L.R., Plášil, J., Kampf, A.R., Burns, P., Steele, I.M., Marty, J., Carlson, S.M. and Mills, O.P. (2017a) Leószilárdite, the first Na,Mg–containing uranyl carbonate from the Markey Mine, San Juan County, Utah, USA. Mineralogical Magazine, 81, 743754.CrossRefGoogle Scholar
Olds, T.A., Plášil, J., Kampf, A.R., Simonetti, A., Sadergaski, L.R., Chen, Y.-S. and Burns, P.C. (2017b) Ewingite: Earth's most complex mineral. Geology, 45, 10071010.CrossRefGoogle Scholar
Olds, T.A., Plášil, J., Kampf, A.R., Dal Bo, F. and Burns, P.C. (2018) Paddlewheelite, a new uranyl carbonate from the Jáchymov District, Bohemia, Czech Republic. Minerals, 8, 511.CrossRefGoogle Scholar
Plášil, J. (2018) A unique structure of uranyl-carbonate mineral sharpite: a derivative of the rutherfordine topology. Zeitschrift für Kristallographie, 233, 579586.CrossRefGoogle Scholar
Plášil, J. and Petříček, V. (2017) Crystal structure of the (REE)-uranyl carbonate mineral kamotoite-(Y). Mineralogical Magazine, 81, 653660.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Skála, R., Škoda, R., Meisser, N., Hloušek, J., Císařová, I., Dušek, M., Veselovský, F., Čejka, J., Sejkora, J. and Ondruš, P. (2012) The crystal chemistry of the uranyl carbonate mineral grimselite, (K,Na)3Na[(UO2)(CO3)3](H2O), from Jáchymov, Czech Republic. Mineralogical Magazine, 76, 446453.CrossRefGoogle Scholar
Plášil, J., Mereiter, K., Kampf, A.R., Hloušek, J., Škoda, R., Čejka, J., Němec, I. and Ederová, J. (2016) Braunerite, IMA2015-123. CNMNC Newsletter No. 31, June 2016, page 692; Mineralogical Magazine, 80, 691–697.Google Scholar
Plášil, J., Čejka, J., Sejkora, J., Hloušek, J., Škoda, R., Novák, M., Dušek, M., Císařová, I., Němec, I. and Ederová, J. (2017) Línekite, K2Ca3[(UO2)(CO3)3]2·8H2O, a new uranyl carbonate mineral from Jachymov, Czech Republic. Journal of Geosciences, 62, 201213.CrossRefGoogle Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 1

Download Kampf et al. supplementary material(File)
File 56.6 KB
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 2

Download Kampf et al. supplementary material(File)
File 56.4 KB
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 3

Download Kampf et al. supplementary material(File)
File 677.1 KB
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 4

Download Kampf et al. supplementary material(File)
File 371.6 KB