Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T16:18:22.579Z Has data issue: false hasContentIssue false

Mineralogical characterization of paulingite from Vinarická Hora, Czech Republic

Published online by Cambridge University Press:  05 July 2018

C. L. Lengauer
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien - Geozentrum, Althanstrasse 14, A-1090 Wien, Austria
G. Giester
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien - Geozentrum, Althanstrasse 14, A-1090 Wien, Austria
E. Tillmanns
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien - Geozentrum, Althanstrasse 14, A-1090 Wien, Austria

Abstract

A sample of the zeolite paulingite from the locality Vinarická Hora was investigated by means of chemical, thermal, powder and single crystal X-ray methods. The fully transparent, colourless to pale yellow crystals exhibit the form {110} and occur together with phillipsite. The chemical composition is (Ca2.57K2.28Ba1.39Na0.38)(Al11.55Si30.59O84)·27H2O, Z = 16 with minor amounts of Mg (<0.05), Sr (<0.13), Mn (<0.01), and Fe (<0.04). The chemical differences from previously described paulingites are a high Ba-content, a lower Si/(Al+Fe) ratio of 2.64, and a reduced water-content. The calculated density is 2.098 g cm−3, and the observed refractive index is 1.482(2). The dehydration behaviour is characterized by a main weight loss from 24–190°C (−11.2 wt.%, ≅ 21H2O) and a minor weight loss from 190–390°C (−3.1 wt.%, ≅ 6H2O). The rehydration capability was proven up to 150°C. The dehydration process during the main weight loss is accompanied by a reduction of the cell volume of 11%. The refined lattice parameters of the X-ray powder data are a a = 35.1231 (5) Å and a = 33.7485(8) Å of an untreated and a dehydrated sample, respectively. A breakdown of the paulingite structure can be observed while the remaining water content decomposes. The single crystal X-ray refinement of this chemically different sample material derived three main cation positions, which are inside a so called paulingite or π-cage (Ca), between 8-rings of neighbouring π-cages (Ba), and in the centre of the non-planar 8-rings of the γ-cage (K). Further partially occupied cation positions (Ca,Na) were located in the planar 8-rings of the α- and γ-cages. No positions within the double 8-membered rings were detected. The water is localized around the main cation positions and in three clusters of partially occupied sites.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, S. and Fäilth, L. (1983) An alternative description of the paulingite structure. J. Solid. State Chem., 46, 265-8.CrossRefGoogle Scholar
Appleman, D.E. and Evans, H.T. (1973) Indexing and least-squares refinement of powder diffraction data., U.S. Geol. Surv. Comp. Contrib., 20, PB2-16188.Google Scholar
Bieniok, A. and Baur, W.H. (1996) Strukturelle Variationen des Zeoliths Paulingit. Z. Kristallogr., Supplement Issue No. 11, 112.Google Scholar
Efremov, N. (1951) Neuigkeiten aus den mineralogischen Untersuchungen der Ukraine und Rufβlands. Fortschr. Mineral., 29-30, 84-6.Google Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Acta Crystallogr., C44, 775-6.Google Scholar
Fischer, R.X. (1990) Der Zeolith ZK-5: Von der K,Cs- Modifikation zum Katalysator. Habilitationsschrift, Universitäit Würzburg, FRG.Google Scholar
Gordon, K.E., Samson, S. and Kamb, W.B. (1966) Crystal structure of the zeolite paulingite. Science, 154, 1004-7.CrossRefGoogle ScholarPubMed
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer, Berlin Heidelberg, 164—7.CrossRefGoogle Scholar
Hawthorne, F.C. and Smith, J.V. (1986) Enumeration of 4-connected 3-dimensional nets and the classification of framework silicates: body centered cubic nets based on the rhombicuboctahedron. Canad. Mineral., 24, 643-8.Google Scholar
Hentschel, G. (1986) Paulingit und andere seltene Zeolithe in einem gefritteten Sandsteineinschluβ im Basalt von Ortenberg (Vogelsberg). Geol. Jahrb.Hessen., 114, 249-56.Google Scholar
Hlouek, J., Veselovsk, F. and Rychl, R. (1988) Chemismus paulingitu z Vinarické hory. Casopis pro mineralogii a geologii, 33, 109.Google Scholar
Jones, J.B. (1968) AI-O and Si-O tetrahedral distances in aluminosilicate framework structures. Acta Cryst., B24, 355-8.CrossRefGoogle Scholar
Katzer, F. (1892) Geologie von Böhmen. I. Taussig, Praha, 1405-6.Google Scholar
Kamb, W.B. and Oke, W.C. (1960) Paulingite, a new zeolite, in association with erionite and filiform pyrite. Amer. Mineral., 45, 79—91.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. Canad. Mineral., 19, 441—50.Google Scholar
Meier, W.M. and Kokotailo, G.T. (1965) The crystal structure of synthetic zeolite ZK-5. Kristallogr., 121, 211-9.CrossRefGoogle Scholar
Meier, W.M., Olson, D.H. and Baerlocher, Ch. (1996): Atlas of zeolite structure types, 4th edition. Zeolites, 17, 1230.Google Scholar
Nawaz, R. (1988) A note on occurrence and optical orientation of brewsterite. Mineral. Mag., 52, 416-7.CrossRefGoogle Scholar
Rouse, R.C., Peacor, R.D. and Merlino, S. (1989) Crystal structure of pahasapaite,a beryllophosphate mineral with a distorted zeolite rho framework. Amer. Mineral., 74, 1195-202.Google Scholar
Schlenker, J.L., Pluth, J.J., Smith, J.V. (1977): Dehydrated natural erionite with stacking faults of the offretite type. Acta Crystallogr., B33, 3265-8.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., A32, 751—67.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SHELXL-96 Program for crystal structure refinement. Universität Göttingen, FRG.Google Scholar
Smith, G.S. and Snyder, R.L. (1979) FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder pattern indexing. J. Appl.Crystallogr., 12, 60-5.CrossRefGoogle Scholar
Speckels, M.L. (1991) Microminerals at Rock Island Dam, Douglas County, Washington. Rocks and Minerals, 66, 226-31.Google Scholar
Suk, M. (1984) Geological history of the territory of the Czech Socialist Republic. Academia Press, Praha, pp. 1256.Google Scholar
Treacy, M.M., Higgins, J.B. and Ballmoos, R.v. (1996) Collection of simulated XRD powder patterns for zeolites. Zeolites, 16, 327-802.CrossRefGoogle Scholar
Tschernich, R.W. and Wise, W.S. (1982) Paulingite: variations in composition. Amer. Mineral., 67, 799-803.Google Scholar
Tschernich, R.W. (1992) Zeolites of the World. Geoscience Press Inc., Phoenix, Arizona, 396—400.Google Scholar
Vaughan, D.E.W. and Strohmaier, K.G. (1987) Zeolite (ECR-18) isostructural with paulingite and a method for its preparation. U.S. Patent Number 4,661,332.Google Scholar
Walenta, K., Zwiener, M. and Telle, R. (1981) Seltene Mineralien aus dem Nephilinit-Steinbruch am H6wenegg im Hegau: Makatit und Paulingit. Der. Aufschlufl, 25, 130-4.Google Scholar