Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T19:27:01.909Z Has data issue: false hasContentIssue false

Mineralogical and cathodoluminescence characteristics of Ca-rich kutnohorite from the Úrkút Mn-carbonate mineralization, Hungary

Published online by Cambridge University Press:  05 July 2018

M. Polgári*
Affiliation:
Institute for Geochemical Research, Hungarian Academy of Sciences, H-1112, Budapest, Budaörsi út 45, Hungary
B. Bajnóczi
Affiliation:
Institute for Geochemical Research, Hungarian Academy of Sciences, H-1112, Budapest, Budaörsi út 45, Hungary
V. Kovács Kis
Affiliation:
Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49, Hungary
J. Götze
Affiliation:
Department of Mineralogy, TU Bergakademie Freiberg, Brennhausgasse 14, D-09596 Freiberg, Germany
G. Dobosi
Affiliation:
Institute for Geochemical Research, Hungarian Academy of Sciences, H-1112, Budapest, Budaörsi út 45, Hungary
M. Tóth
Affiliation:
Institute for Geochemical Research, Hungarian Academy of Sciences, H-1112, Budapest, Budaörsi út 45, Hungary
T. Vigh
Affiliation:
Mangán Ltd., H-8409 Úrkút, Hungary

Abstract

Kutnohorite with moderate and bright orange-red cathodoluminescence (CL) was studied by CL microscopy and spectroscopy. This mineral was found in fossiliferous concretions composed mainly of rhodochrosite from the Mn-carbonate mineralization at Úrkút, Hungary. The CL microscopy reveals that kutnohorite occurs as impregnations, layers and veinlets. X-ray diffraction, infrared spectroscopy and electron microprobe studies indicate that the luminescent kutnohorite has excess Ca (72.9–80.0 mol.% CaCO3, 16.3–20.5 mol.% MnCO3, 3.3–5.6 mol.% MgCO3 and 0.0–0.5 mol.% FeCO3). Transmission electron microscopy shows that the luminescent carbonate has a dolomite-type structure, with modulated and mosaic microstructures. The CL spectra of this Ca-rich kutnohorite have a single emission band at 630 nm that is characteristic of Mn2+ substitution in the structure. Our results provide evidence for moderate-to-bright cathodoluminescence of Mn-rich natural carbonates even at 8–10 wt.% Mn and up to 2400 ppm Fe. The self-quenching of Mn appears incomplete in the case of Ca-rich kutnohorite from Úrkút.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, D.J. and Khan, M.R. (1987) Compositioninduced microstructures in rhombohedral carbonates. Mineralogical Magazine, 51, 71–86.CrossRefGoogle Scholar
Bini, B. and Menchetti, S. (1985) Kutnohorite from Levane Upper Valdarno (Italy). Periodico di Mineralogia, 54, 61–66.Google Scholar
Böttcher, M.E., Gehlken, P.L. and Usdowski, E. (1992) Infrared spectroscopic investigations of the calciterhodochrosite and parts of the calcite–magnesite mineral series. Contributions to Mineralogy and Petrology, 109, 304–306.CrossRefGoogle Scholar
Böttcher, M.E., Gehlken, P.L., Usdowski, E. and Reppke, V. (1993) An infrared spectroscopic study of natural and synthetic carbonates from the quaternary system CaCO3−MgCO3−FeCO3−MnCO3 . Zeitschrift der Deutschen Geologischen Gesellschaft, 144, 478–484.CrossRefGoogle Scholar
Burke, I.T. and Kemp, A.E.S. (2002) Microfabric analysis of Mn–carbonate laminae deposition and Mn–sulfide formation in the Gotland Deep, Baltic Sea. Geochimica et Cosmochimica Acta, 66, 1589–1600.CrossRefGoogle Scholar
Calderón, T., Townsend, P.D., Beneitez, P., Garcia–Guinea, J., Millán, A., Rendell, H.M., Tookey, A., Urbina, M. and Wood, R.A. (1996) Crystal field effects on the thermoluminescence of manganese in carbonate lattices. Radiation Measurements, 26, 719–731.CrossRefGoogle Scholar
Calvo de Castillo, H., Ruvalcaba Sil, J.L., Álvarez, M.A., Beneitez, P., Millán, M.A. and Calderón, T. (2006) Relationship between ionoluminescence emission and bond distance (M–O) in carbonates. Nuclear Instruments and Methods in Physics Research, B249, 217–220.Google Scholar
Dragov, P. (1965) Mineralogical and geochemical study of the Osogovo Pb–Zn deposits. Works on the Geology of Bulgaria, Series Geochemistry, Mineralogy and Petrography, 5, 209–265.(in Bulgarian with German abstract).Google Scholar
Dragov, P. and Neykov, H. (1991) Carbonate petrology of the Č iprovci ore zone. Geologica Balcanica, 21, 69–98.Google Scholar
Drits, V.A., McCarty, D.K., Sakharov, B. and Milliken, K.L. (2005) New insight into structural and compositional variability in some ancient excess Ca–dolomite. The Canadian Mineralogist, 43, 1255–1290.CrossRefGoogle Scholar
El Ali, A., Barbin, V., Calas, G., Cervelle, B., Ramseyer, K. and Bouroulec, J. (1993) Mn2+–activated luminescence in dolomite, calcite and magnesite: quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chemical Geology, 104, 189–202.CrossRefGoogle Scholar
Fan, D., Hein, J.R. and Ye, J. (1999) Ordovician reefhosted Jiaodingshan Mn–Co deposit and Dawashan FIG. 10. CL behaviour of carbonates as a function of Mn vs. Fe concentration (ppm on logarithmic scale) (modified after Machel et al., 1991). The Úrkút kutnohorite samples support the theory that intensive luminescence can exist up to 10 wt.% Mn and 2400 ppm Fe concentrations (log Mn = 5, log Fe = 3.4). Legend–open circles: kutnohorite in concretion H1; filled circles: kutnohorite in concretion H4; grey square: manganocalcite with 11.5 wt.% Mn and 0.5 wt.% Fe (Walker et al., 1989). Mn deposit, Sichuan Province, China. Ore Geology Reviews, 15, 135–151.Google Scholar
Farkas, L., Bolzenius, B.H., Schäfer, W. and Will, G. (1988) The crystal structure of kutnohorite CaMn(CO3)2. Neues Jahrbuch für Mineralogie Monatshafte, 12, 539–546.Google Scholar
Frondel, C. and Bauer, L. (1955) Kutnahorite: a manganese dolomite: CaMn(CO3)2. American Mineralogist, 40, 748–760.Google Scholar
Gabrielson, O. and Sundius, N. (1966) Ca–rich kutnahorite from Långban, Sweden. Arkiv för Mineralogi och Geologi, 4, 287–289.Google Scholar
Gaft, M.L., Gorobets, B.S., Naumova, I.S., Mironova, N.A. and Grinvald, G.A. (1981) Link of luminescent properties with crystal–chemical peculiarities in manganese minerals. Mineralogicheskij Zurnal, 2, 80–89.(in Russian).Google Scholar
Gaft, M., Reisfeld, R. and Panczer, G. (2005) Modern Luminescence Spectroscopy of Minerals and Materials. Springer Verlag, Berlin.Google Scholar
Gillhaus, A., Habermann, D., Meijer, J. and Richter, D.K. (2000) Cathodoluminescence spectroscopy and micro–PIXE: combined high resolution Mn–analyses in dolomites–Firstresult s. Nuclear Instruments and Methods in Physics Research, B161–163, 842–845.Google Scholar
Gillhaus, A., Richter, D.K., Meijer, J., Neuser, R.D. and Stephan, A. (2001) Quantitative high resolution cathodoluminescence spectroscopy of diagenetic and hydrothermal dolomites. Sedimentary Geology, 140, 191–199.CrossRefGoogle Scholar
Gorobets, B., Gaft, M. and Laverova, L. (1978) Photoluminescence of manganese minerals. Journal of Applied Spectroscopy, 28, 750–752.(in Russian).CrossRefGoogle Scholar
Götte, T. and Richter, D.K. (2004) Quantitative highresolution cathodoluminescence spectroscopy of smithsonite. Mineralogical Magazine, 68, 199–207.CrossRefGoogle Scholar
Gutzmer, J. and Beukes, N.J. (1996) Mineral paragenesis of the Kalahari manganese field, South Africa. Ore Geology Reviews, 11, 405–428.CrossRefGoogle Scholar
Gutzmer, J. and Beukes, N.J. (1998) The manganese formation of the Neoproterozoic Pengana Group, India, revision of an enigma. Economic Geology, 93, 1091–1102.CrossRefGoogle Scholar
Habermann, D. (2002) Quantitative cathodoluminescence (CL) spectroscopy of minerals: possibilities and limitations. Mineralogy and Petrology, 76, 247–259.CrossRefGoogle Scholar
Habermann, D., Neuser, R.D. and Richter, D.K. (1996) Hochauflösende Spektral analyse der Kathodolumineszenz (KL) von Dolomit und Calcit: Beispiele der Mn– und SEE–aktivierten KL in Karbonatsedimenten. Zentralblatt für Geologie und Paläontologie Teil I, 1995, 145–157.Google Scholar
Habermann, D., Neuser, R.D. and Richter, D.K. (1998) Low limito f Mn2+–activated cathodoluminescence of calcite: state of art. Sedimentary Geology, 116, 13–24.CrossRefGoogle Scholar
Habermann, D., Meijer, J., Neuser, R.D., Richter, D.K., Rolfs, C. and Stephan, A. (1999) Micro–PIXE and quantitative cathodoluminescence spectroscopy: combined high resolution trace element analyses in minerals. Nuclear Instruments and Methods in Physics Research, B150, 470–477.Google Scholar
Habermann, D., Neuser, R.D. and Richter, D.K. (2000) Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. Pp. 331–358 in: Cathodoluminescence in Geosciences (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer Verlag, Berlin.Google Scholar
Hein, J.R., Fan, D., Ye, J., Liu, T. and Yeh, H.–W. (1999) Composition and origin of Early Cambrian Tiantaishan phosphorite–Mn carbonate ores, Shaanxi Province, China. Ore Geology Reviews, 15, 95–134.CrossRefGoogle Scholar
Kolkovski, B., Bogdanov, K. and Petrov, S. (1980) Mineralogy, geochemistry and genetic features of the deposits along Goliam Palas–Ribnica fault, Madan ore field. Annual of the Sofia University ‘St.K. Ohridski’, Faculty of Geology and Geography, Vol. 1–Geology, 74, 97–139.(in Bulgarian with English abstract).Google Scholar
Krajewsky, K.P., Lefeld, J. and Lacka, B. (2001) Early diagenetic process in the formation of carbonatehosted Mn ore deposit (Lower Jurassic, Tatra Mountains) as indicated from its carbon isotopic record. Bulletin of the Polish Academy of Sciences, Earth Sciences, 49, 13–29.Google Scholar
Large, R.R., Allen, R.L., Blake, M.D. and Herrmann, W. (2001) Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic–hosted massive sulphide deposit, western Tasmania. Economic Geology, 96, 1055–1072.CrossRefGoogle Scholar
Lumsen, D.N. and Lloyd, R.V. (1984) Mn(II) partitioning between calcium and magnesium sites in studies of dolomite origin. Geochimica et Cosmochimica Acta, 48, 1861–1865.Google Scholar
Machel, H.G. (2000) Application of cathodoluminescence to carbonate diagenesis. Pp. 271–301 in: Cathodoluminescence in Geosciences (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer Verlag, Berlin.Google Scholar
Machel, H.G., Mason, R.A., Mariano, A.N. and Mucci, A. (1991) Causes and emission of luminescence in calcite and dolomite. Pp. 9–25 in: Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications (Barker, C.E. and Kopp, O.C., editors). Society of Sedimentary Geologists, Short Course no. 25.Google Scholar
Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centres in Minerals. Springer Verlag, Berlin.CrossRefGoogle Scholar
Marshall, D.J. (1988) Cathodoluminescence of Geological Materials. Unwin–Hyman, Boston.Google Scholar
Mason, R.A. (1987) Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. Chemical Geology, 64, 209–224.CrossRefGoogle Scholar
Mason, R.A. and Mariano, A. N. (1990) Cathodoluminescence activation in manganese–bearing and rare earth–bearing synthetic calcites. Chemical Geology, 88, 191–206.CrossRefGoogle Scholar
Neuser, R.D. (1995) A new high–intensity cathodoluminescence microscope and its application to weakly luminescing minerals. Bochumer Geologische und Geotechnische Arbeiten, 44, 116–118.Google Scholar
Nyame, F.K., Beukes, N.J., Kase, K. and Yamamoto, M. (2003) Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or postformational diagenesis? Sedimentary Geology, 154, 159–175.CrossRefGoogle Scholar
Ozturk, H. and Frakes, L.A. (1995) Sedimentation and diagenesis of an Oligocene manganese depositin a shallow sub–basin of the Paratethys: Thrace Basin, Turkey. Ore Geology Reviews, 10, 117–132.CrossRefGoogle Scholar
Peacor, D., Essene, E. and Gaines, A. (1987) Petrologic and crystal–chemical implications of cation orderdisorder in kutnahorite [CaMn(CO3)2]. American Mineralogist, 72, 319–328.Google Scholar
Polgári, M. (2001) Contribution of volcanic material?–A new aspect of the genesis of the black shale–hosted Jurassic Mn–carbonate ore formation, ÚrkútBasin, Hungary. Acta Geologica Hungarica, 44, 419–438.Google Scholar
Polgári, M., Okita, P.M. and Hein, J.R. (1991) Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary. Journal of Sedimentary Petrology, 61, 384–393.Google Scholar
Polgári, M., Szabó, Z. and Szederkényi, T. (2000) Manganese Ores in Hungary.In Commemoration of Professor Gyula Grasselly. Szeged Regional Committee of the Hungarian Academy of Sciences, Juhász Publishing House, Szeged, Hungary.Google Scholar
Polgári, M., Szabó–Drubina, M. and Szabó, Z. (2004) Theoretical model for Jurassic manganese mineralization in Úrkút, Hungary. Bulletin of Geosciences, 79, 53–61.Google Scholar
Polgári, M., Philippe, M., Szabó–Drubina, M. and Tóth, M. (2005a) Manganese–impregnated wood from a Toarcian manganese ore deposit, Eplény Mine, Bakony Mts, Transdanubia, Hungary. Neues Jahrbuch für Geologie und Paläontologie–Monatshefte, 2005/3, 175–192.CrossRefGoogle Scholar
Polgári, M., Szabó, Z., Szabó–Drubina, M., Hein, R.J. and Yeh, H–W. (2005b) A porous silica rock (‘tripoli’) in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition and origin through carbonate dissolution. Sedimentary Geology, 177, 87–96.CrossRefGoogle Scholar
Reeder, R.J. (1981) Electron optical investigation of sedimentary dolomites. Contributions to Mineralogy and Petrology, 76, 148–157.CrossRefGoogle Scholar
Reeder, R.J. (1983) Crystal chemistry of the rhombohedral carbonates. Pp. 1–47 in: Carbonates: Mineralogy and Chemistry (Reeder, R.J., editor). Reviews in Mineralogy, 11, Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Reeder, R.J. (1992) Carbonates: growth and alteration microstructures. Pp. 380–424 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Buseck, P.R., editor). Reviews in Mineralogy, 27, Mineralogical Society of America, Washington D.C. Google Scholar
Reeder, R.J. (2000) Constraints on cation order in calcium–rich sedimentary dolomite. Aquatic Geochemistry, 6, 213–226.CrossRefGoogle Scholar
Richter, D.K., Götte, Th., Götze, J. and Neuser, R.D. (2003) Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineralogy and Petrology, 79, 127–166.CrossRefGoogle Scholar
Spötl, C. (1991) Cathodoluminescence of magnesite: examples from the Alps. Geology, 19, 52–55.2.3.CO;2>CrossRefGoogle Scholar
Tanida, K. and Kitamura, T. (1982) Mineralogy and thermal transformation of kutnahorite from Fujikura mine, Iwate Prefecture, with the subsolidus relation of system CaO–manganese oxide at 1100ºC and 1400ºC in air. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 77, 227–234.CrossRefGoogle Scholar
Trdlička, Z. (1963) Mineralogick vyzkum českch kutnohoritu. Sbornik národního muzea v Praze, 19, 163–174.Google Scholar
Tsusue, A. (1967) Magnesian kutnahorite from Ryuˆjima mine, Japan. American Mineralogist, 52, 1751–1761.Google Scholar
Vassileva, M., Dobrev, S. and Damyanov, Z. (2003) Comparative characteristics of endogenic kutnahorite from Ribnitsa deposit and exogenic kutnahorite from Kremikovtsi deposit. Annual of the University of Mining and Geology ‘St.Ivan Rilski’, Part I, Geology and Geophysics, 46, 195–200.Google Scholar
Walker, G., Abumere, O.E. and Kamaluddin, B. (1989) Luminescence spectroscopy of Mn2+ centres in rockforming carbonates. Mineralogical Magazine, 53, 201–211.CrossRefGoogle Scholar
Žak, L. and Povondra, P. (1981) Kutnohorite from the Chvaletice pyrite and manganese deposit, East Bohemia. Tschermaks Mineralogische und Petrographische Mitteilungen, 28, 55–63.Google Scholar